Fast and Reversible Photo-Responsive Wettability on TiO₂ based hybrid surfaces

Gwendoline Petroffe, Chao Wang, Xavier Sallenave, Gjergji Sini, Fabrice Goubard, and Sébastien Péralta

Electronic Supplementary information (ESI)

I Theoretical absorption spectra of Trans- and Cis-AzoC11 acid in THF

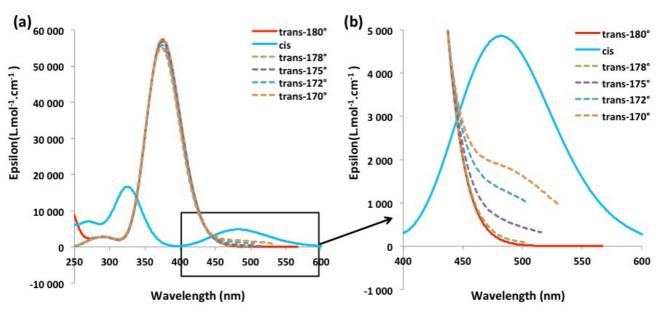


Figure S1: Theoretical absorption spectra of *Trans*- and *Cis*-AzoC11 acid in THF. Compared to the perfectly planar *Trans*-isomer (indicated as *Trans*-180°), small deformations from the planarity around the N=N bond are simulated and reported as *Trans*-180°, 178°, 175°, 172° and 170°. The $n\rightarrow\pi$ transition at 500 nm, which is forbidden for *Trans*-180° (red plot) is shown to become less forbidden with deviation from π -backbone planarity.

II Absorption onset on the UV-Vis spectra

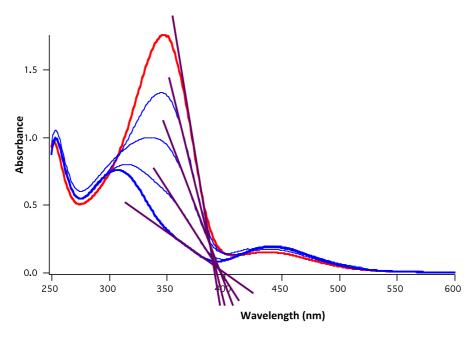


Figure S2: Absorption onset on the UV-Vis spectra of AzoC11 acid solution

III Theoretical estimation of molecular-areas.

Considering the maximum distances along the two short-axes directions (1.8Åx7.3 Å and 5.1Åx5.6Å respectively for the *Trans*- and *Cis*-isomers), and by adding one hydrogen van der Waals radii (1.2 Å) to each dimension, molecular areas of roughly 0.26 nm² and 0.43 nm² respectively can be deduced. While being close to the experimental results, the theoretical values correspond to pure *Trans*- and *Cis* isomers. However, small mixing cannot be excluded in the *Cis*- experimental state as suggested by the absorption spectra in THF. By arbitrary considering the value of 5-10 % of *Trans*-mixing in the *Cis*-isomer after UV irradiation, effective molecular area of 41-42 nm² can be found for the *Cis*-isomer, in good agreement with the experimental result.

IV Expression of surface ratio

The surface ratio of the AzoC11 acid on the nanoparticles was estimated with this following relation:

$$Surface\ ratio = \frac{Area_{AzoC11\ acid} \times N_a \times \frac{m_{AzoC11\ acid}}{M_{AzoC11\ acid}}}{Area_{TiO_2} \times m_{TiO_2}}$$

The numerator represented the total area of the AzoC11 acid molecules and the denominator represented total area of the nanoparticles.

Area_{AzoC11 acid}: area molecular of the AzoC11 acid,

 N_a : Avogadro constant,

m_{AzoC11 acid}: weight of the AzoC11 acid,

M_{AzoC11 acid}: Molar weight of the AzoC11 acid,

Area_{TiO2}: specific area of TiO₂ nanoparticles P25 (55 m²/g),

m_{TiO2}: weight of TiO₂ nanoparticles.

V values of wetting study

Surface Ratio	0%	39%	62%	77%	116%	193%
$\theta_{ ext{init}}$	<10°	26.7°±2.7°	136.7°±2.4°	146.0°±2.1°	152.8°±3.4°	156.5°±2.4°
$\theta_{after\;UV}$	<10°	<10°	35.9°±3.4°	21.2°±3.9°	117.2°±2.1°	139.6°±1.8°
θ_{init} - $\theta_{after\ UV}$	0°	16.7°±2.7°	100.8°±5.8°	124.8°±6.0°	35.6°±5.5°	16.9°±4.2°

<u>Table S1:</u> Initial water contact-angle, contact angle after 12 min of UV irradiation and the variation of the contact angles between before- and after the UV irradiation

VI Comparison of contact angle variations versus the irradiation conditions

The following table reports some results in the literature concerning the contact angle variations $(\Delta\theta^{\circ})$ and irradiation conditions.

Δθ (°)	The power of the UV source	Irradiation Time	References
12°	25 Watt	5 min	1
50°	10 Watt	60 min	2
121°	8 Watt	13 hours	3
124°	15 Watt	12 min	This study
138°	300 Watt	10 min	4
156°	150 Watt	2 hours	5

<u>Table S2:</u> Contact angle variations versus the irradiation conditions

References

- 1. D. Yang, M. Piech, N. S. Bell, D. Gust, S. Vail, A. a Garcia, J. Schneider, C.-D. Park, M. a Hayes, and S. T. Picraux, *Langmuir*, 2007, **23**, 10864–10872.
- 2. M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, *Surf. Sci.*, 2002, **511**, 401–407.
- 3. C. Jin, R. Yan, and J. Huang, *J. Mater. Chem.*, 2011, **21**, 17519–17525.
- 4. H. S. Lim, J. T. Han, D. Kwak, M. Jin, and K. Cho, *J. Am. Chem. Soc.*, 2006, **128**, 14458–14459.
- 5. W. Sun, S. Zhou, B. You, and L. Wu, *J. Mater. Chem. A*, 2013, **1**, 3146–3154.