Highly Ordered Mesoporous NiCo₂O₄ with Superior Pseudocapacitance Performance for Supercapacitors

Lei An^a, Qilong Ren^a, Wenyao Li^{a,b}, Kaibing Xu^a, Yunjiu Cao^{a,c}, Tao Ji^{a,c}, Rujia Zou^{a,d}, Zhigang Chen^a, and Junqing Hu^{*a}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

^b School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

^c School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China.

^d Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong.

E-mail: hu.junqing@dhu.edu.cn

Part I: Calculations

The specific capacitance (C) of the electrode was calculated from the discharge curves using the following formula¹:

$$C = \frac{I \times \Delta t}{m \times \Delta V}$$

where I (A), Δt (s), m (g), and ΔV (V) are the discharge current, discharge time consumed in the potential range of ΔV , mass of the active materials, and the potential windows, respectively.

The energy density (E) and power density (P) are calculated from the discharge curves using the following formula:

$$\mathbf{E} = \mathbf{Error!} \times C \times \varDelta V^2$$
$$\mathbf{P} = \frac{\mathbf{E}}{\Delta \mathbf{t}}$$

1. J. Yan, E. Khoo, A. Sumboja and P. S. Lee. ACS Nano, 4 (2010), 4247.

Part II: Supplementary Figures

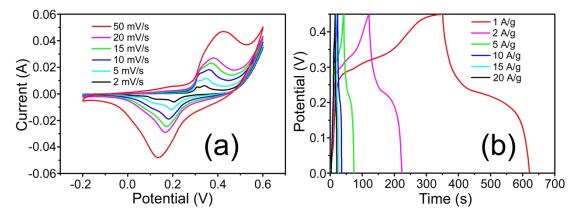


Fig. S1 (a) CV curves at different scan rates and (b) galvanostatic charge-discharge curves at different current densities of the conventional $NiCo_2O_4$, respectively.

Fig. S2 Ragone plot (energy density vs. power density) of the conventional NiCo₂O₄.

Fig. S3 CV curves at different scan rates and galvanostatic charge-discharge curves at different current densities of the mesoporous Co_3O_4 (a, c) and mesoporous NiO (b, d), respectively.

Table S1 A comparison of the capacitance for the highly ordered mesoporous $NiCo_2O_4$ electrode material with other reported $NiCo_2O_4$ electrodes in previous literatures.

Electrode Materials	Specific Capacitance	Ref.
Highly ordered mesoporous NiCo ₂ O ₄	1699 F/g at 1 A/g	This work
Porous NiCo ₂ O ₄ hetero-structure arrays	891 F/g at 1 A/g	16
NiCo ₂ O ₄ nanorods	565 F/g at 1 A/g	18
Porous NiCo ₂ O ₄ nanowires	743 F/g at 1 A/g	20
Porous NiCo ₂ O ₄ flowerlike nanostructure	658 F/g at 1 A/g	21
Porous NiCo ₂ O ₄ nanostructures	1197 F/g at 1 A/g	25
porous spinel NiCo ₂ O ₄	726.8 F/g at 1 A/g	36
Flower-shaped NiCo ₂ O ₄ microsphere	1006 F/g at 1 A/g	37

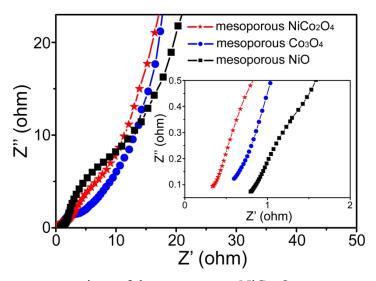


Fig. S4 EIS spectra comparison of the mesoporous $NiCo_2O_4$, mesoporous Co_3O_4 and mesoporous NiO electrodes, respectively.