Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

A Novel Mussel-Inspired Strategy toward Superhydrophobic Surface for Self-Driven Crude Oil Spill Cleanup

Zhenxing Wang,^a Yanchao Xu,^a Yuyan Liu,^a and Lu Shao*a

^a School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, PR China.

* E-mail address of corresponding author:

*Prof. L. Shao E-mail: shaolu@hit.edu.cn

1. The influence of the concentration of FA.

Formation and collection of nanoparticles (NPs): Dopamine hydrochloride (DA, 0.2 g) and different amount of folic acid (FA, 0 g, 0.1 g and 0.2 g) were added into deionized water (100 mL) and stirred for 18 h at 60 °C (**Stage I**). Then the pH of the mixture was tuned to 8.5 by HCl-Tris followed by stirring for 12 h at room temperature (**Stage II**). Finally, those nanoparticles formed in different solutions were thoroughly washed and then collected by centrifugation, and dried at 50°C until the weight is constant. The weight of those nanoparticles was recorded respectively for comparison.

 Table S1 Weight of nanoparticles (NPs) collected from DA solution and DA/FA

 solution with different amount of FA.

Nanoparticles	DA	FA	Stage I	Stage II	Weight of NPs
(NPs)	$(mg mL^{-1})$	$(mg mL^{-1})$	(h)	(pH)	(mg)
NPs-0	2	0	18	pH=8.5	78
NPs-1		0.5			65
NPs-2		1			52
NPs-3		2			28

2. Characterization of the NPs-0 and NPs-2

Fig. S1 SEM images of (a) NPs-0 and (b) NPs-2. (1-Low magnification; 2-High magnification. The detailed formation conditions of these nanoparticles have been shown in Table S1.)

Fig. S2 XPS spectra of (a) NPs-0 and (b) NPs-2. (The detailed formation conditions of these nanoparticles have been shown in Table S1.)

Nanonartialas (NDs)	Composition (At.%)				
Nanoparticles (NPs) –	С	Ν	0	N/C	
NPs-0	73.8	6.8	18.4	0.09	
NPs-2	72.6	7.7	19.7	0.11	

Table S2 Elemental compositions of (a) NPs-0 and (b) NPs-2.

Fig. S3 SEM images of the fabric treated by DA/FA solution. The duration of Stage I is 18h. (The modification process of the fabric is same to that used to prepare Fabric-4, excepting the concentration of DA and FA. The concentration of DA and FA is 1 mg mL⁻¹ and 0.5 mg mL⁻¹, respectively.)

3. Water contact angle of the pristine fabric

Fig. S4 Change of the water contact angle of the pristine fabric with the drop ages. As shown in Fig.S5, the water contact angle of the pristine fabric (Fabric-0) is

about 65°, and the water droplet can easily permeate into the pristine fabric in 5s.