Supplemental material:

Enhancement of thermoelectric performance of β-Zn₄Sb₃ through resonant

distortion of electronic density of states doped with Gd

Baojin Ren,^a Mian Liu,^a Xiaoguang Li,^b Xiaoying Qin,^{*a} Di Li,^a Tianhua Zou,^a Guolong Sun,^a Yuanyue Li,^a Hongxing Xin,^a and Jian Zhang^a

^aKey Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Science, 230031 Hefei, P. R. China.

^bHefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of

China, 230026 Hefei, P. R. China.

Corresponding author. Tel: +86 0551 65592750; fax:+86 0551 65591434. E-mail address: xyqin@issp.ac.cn.

(1) Microstructural characterization

Fig. S1 (a) XRD patterns and (b) lattice constant of the β -(Zn_{1-x}Gd_x)₄Sb₃ (*x*=0, 0.001, 0.002 and 0.003) samples.

(2) Lattice thermal conductivity

Fig. S2 Temperature dependences of lattice thermal conductivity κ_L .

(3) The heat capacity of part samples

Fig. S3 Temperature dependences of heat capacity C_p for x = 0 and 0.002 compounds.

(4) The magnetic contributions C_m from Gd

The magnetic contributions C_m from 4f electrons of Gd cannot be ignored in Gd-doped samples. M.J. Parsons *et al.*^{1, 2} have calculated the magnetic entropy S_m of Gd, which has proportional relationship with both temperature and Gd content at T<9 K. According to

relationship between entropy S_m and heat capacity C_m : $C_m = T \frac{dS_m}{dT}$, the magnetic heat capacity contribution C_m for the sample with *x*=0.002 can be derived as: $C_m=3.6T$ (*mJ/mol. K*). Then total heat capacity for the Gd-doped samples should be written as $C_p=\gamma T+bT^3+C_m$, or $C_p-C_m=\gamma T+bT^3$. (see Fig. S4)

Fig. S4 Temperature dependence of C_p , C_m and C_p - C_m for x=0.002 sample.

Reference

- M. J. Parsons, J. Crangle, B. Dennis, K. U. Neumann and K. R. A. Ziebeck, *Czech J Phys*, 1996, 46, 2057-2058.
- M. J. Parsons, J. Crangle, K. U. Neumann and K. R. A. Ziebeck, *J Magn Magn Mater*, 1998, **184**, 184-192.