Support information for

Preparation of Positively Charged Nanofiltration Membrane Based on Hydrophilic-hydrophobic Transformation of Poly(ionic liquid)

Ying Tang, Beibei Tang* and Peiyi Wu*

State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China

^{*}Corresponding authors. Tel.: +86-21-65643255. Fax: +86-21-65640293.

E-mail addresses: bbtang@fudan.edu.cn (B. Tang), or peiyiwu@fudan.edu.cn (P. Wu).

■ SUPPORTING RESULTS:

1.

Table S1. PWF and rejection to PEG 10000, PEG 20000 of PSf supporting membrane at 0.2 MPa

PSf supporting membrane	Pure water flux (L/m ² ·h ⁻¹)	Rejection (%)	
		PEG 10000	PEG 20000
Performance	360	32	50

Fig. S1 (A). ¹H NMR spectrum (12-0 ppm) of PIL product (prepared with VIM, BuBr and obtained by drying the original reacted aqueous without further purification), (B). Enlarged ¹H NMR spectrum of (A) in the range of 6 to 3 ppm, (C). ¹H NMR spectrum (6-3 ppm) of product of PIL homopolymer (prepared with IL monomer and obtained by drying the original reacted aqueous without further purification) in D₂O at 25 °C.

Table S2. Integrations of peaks in the spectrum of product (obtained by drying the original reacted aqueous without further purification) in D₂O at 25 °C in Fig. S1 (A).

Peak	Integrations	
p, z	1.0	
o, l, x, y	0.9	
a	0.8	
f	3.8	
b	0.7	
g, k, w	1.8	
r, s	1.1	
c, d, e, i, j, u, v	5.0	
h	1.8	
t	0.5	

Illustration

The result of ¹H NMR shows the quaternization reaction is well completed. The main content in hydrophilic PIL solution is hydrophilic PIL (poly (ViBuIm⁺Br⁻co-VIM)). Furthermore, estimated from the integrations, we can analyze that nearly 85 wt% the reactants were transformed to hydrophilic PIL (poly (ViBuIm⁺Br⁻co-VIM)). Besides, in hydrophilic PIL chains the mole ratio of ViBuIm⁺Br⁻ to VIM is about 17:1 (only 5.5 mol% of VIM is unreacted with BuBr). Thus, the peaks of BuBr is not obvious in the NMR spectra.

Fig. S2 Rejection to $CuSO_4$, $CoSO_4$ and $NiSO_4$ of PIL/PSf.

Fig. S3 PWF and MgCl₂ rejection of PIL/PSf prepared from KPF₆ aqueous with concentration of 40, 50, 60, 70 and 80 mg/ml, when fixed the hydrophilic PIL aqueous concentration to 6 wt%.

Fig. S4 SEM images of PIL/PSf prepared from KPF_6 aqueous with concentration of 40, 50, 60, 70 and 80 mg/ml, when fixed the hydrophilic PIL aqueous concentration to 6 wt%.

Fig. S5 Deposition degree of PIL/PSf prepared from KPF_6 aqueous with concentration of 40, 50, 60, 70 and 80 mg/ml, when fixed the hydrophilic IL aqueous concentration to 6 wt%.

Fig. S6 Streaming potential of PIL/PSf prepared from KPF_6 aqueous with concentration of 40, 50, 60, 70 and 80 mg/ml, when fixed the hydrophilic PIL aqueous concentration to 14 wt%.

Fig. S7 Distribution of element F and Br in the surface of PIL/PSf prepared from KPF_6 aqueous with concentration of 40, 50, 60, 70 and 80 mg/ml, when fixed the hydrophilic PIL aqueous concentration to 14 wt%, investigated by EDS (Oxford Instrument X-MAX 50).

Table S3. Mole ratio of element F to Br and PF_6^- to Br⁻ in the surface of PIL/PSf prepared from KPF₆ aqueous with concentration of 40, 50, 60, 70 and 80 mg/ml, when fixed the hydrophilic PIL aqueous concentration to 14 wt%, investigated by EDS (Oxford Instrument X-MAX 50).

Samples	Mole ratio of F to Br	Mole ratio of PF_6^- to Br
40 mg/ml	44.96	7.49
50 mg/ml	58.33	9.72
60 mg/ml	74.10	12.35
70 mg/ml	97.99	16.33
80 mg/ml	103.71	17.29

Picture A: The concentration of hydrophilic PIL is 14 wt% and the concentration of KPF_6 is 60 mg/ml.

Picture A shows the change of the interface of hydrophilic PIL aqueous and hydrophobic PIL (white opaque layer) in tube after injecting KPF₆ aqueous with different time. As a result, the interface moved quickly to the direction of hydrophilic PIL aqueous as the PF_6^- ion diffusing further into hydrophilic PIL aqueous within 1 min, which reflect the fast moving of PF_6^- into the hydrophilic PIL aqueous. After 1 min, the interface changes little.

12

А

Picture B: The concentration of hydrophilic PIL is 14 wt% and the concentration of KPF₆ is 60 mg/ml.

Picture B shows the change of the interface of hydrophilic PIL aqueous and hydrophobic PIL (white opaque layer) in tube after injecting hydrophilic PIL aqueous with different time. As a result, the interface moved quickly to the direction of hydrophilic PIL aqueous as the PF_6^- ion diffusing further into hydrophilic PIL aqueous within 1 min. After 1 min, the interface changes little. It also verifies that the moving of interface (and PF_6^-) in Picture A is not caused by gravity.

Picture C: The concentration of hydrophilic PIL is 14 wt% and the concentration of KPF_6 is 40, 60, 80 mg/ml.

Picture C shows the different change ability of the height of hydrophilic PIL aqueous in tubes after injecting KPF₆ aqueous with different concentration for 1 min. As expected, in the system with lower concentration of KPF₆ aqueous, the moving distance of PF_6^- into the PIL aqueous is father probably due to the looser interface formed and a less inhibiting effect.

Fig. S8 Simulation of the hydrophobic PIL formation process in the membrane pores with small tubes.

Fig. S9 PWF and MgCl₂ rejection of PIL/PSf prepared from unperified and purified hydrophilic PIL when fixed the hydrophilic PIL aqueous concentration to 14 wt% and KPF₆ aqueous with concentration of 60 mg/ml.