## **Electronic Supplementary Information**

Facile synthesis of a  $Co_3O_4$ @carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors



Fig. S1 Schematic illustration of the symmetric supercapacitor configuration.



**Fig. S2** Photographs of CNTs (a),  $Co_3O_4$  (b), CNTs/PIn (c),  $Co_3O_4$ @CNTs (d) and  $Co_3O_4$ @CNTs/PIn (e) dispersed in water (1 mg/mL) after 1 h ultrasonication and stood for 72 h.



Fig. S3 TEM images of  $Co_3O_4$ , inset is HRTEM micrographs of  $Co_3O_4$  nanoparticles.



Fig. S4 XRD pattern of prepared Co<sub>3</sub>O<sub>4</sub>@CNTs/PIn and Co<sub>3</sub>O<sub>4</sub>@CNTs.



Fig. S5 Galvanostatic charge/discharge curves of four different materials at a scan rate of  $1 \text{ A g}^{-1}$ .



**Fig. S6** (A) Cyclic voltammetry curves of bare GCE, CNTs, CNTs/PIn,  $Co_3O_4@CNTs$  and  $Co_3O_4@CNTs/PIn$  modified GCE in a 10 mM  $K_3Fe(CN)_6$  and 0.1 M KCl solution at a scan rate of 100 mV s<sup>-1</sup>, (B) Peak currents as a function of scan rate for the determination of the effective working surface area.



**Fig. S7** The specific capacitance of  $Co_3O_4@CNTs/PIn$  device as a function of PIn (A) and  $Co(NO_3)_2 \cdot 6H_2O$  (B), respectively,  $Co(NO_3)_2 \cdot 6H_2O$  mass is fixed at 0.3 g for (A) plot, PIn mass is fixed at 0.1 g for (B) plot.