Highly Flexible and Transferable Supercapacitors with Ordered Three-dimensional MnO₂/Au/MnO₂ Nanospikes Arrays

Yuan Gao,^a Huanyu Jin,^b Qingfeng Lin,^a Xiang Li,^a Mohammad Mahdi Tavakoli,^a Siu-Fung Leung,^a Wing Man Tang,^b Limin Zhou,^c Helen Lai Wa Chan,^b Zhiyong Fan^{*a}

^aDepartment of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China SAR

^b Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China SAR

^c Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China SAR

Supplementary Information

Figure S1. Mechanical robustness test of free-standing Au NSPs film with tweezers. a-c) Freestanding Au NSPs film wraps itself up upon leaving the surface of solution. d-f) The film unwraps itself naturally when placed back to the solution. g) Schematic image shows the point contact between NSPs.

Figure S2. a) Photograph of free-standing Au NSPs film transfered onto PC. b) Si mold and asfabricated Au NSPs with the footprint area of $1.5 \text{ cm} \times 1.5 \text{ cm}$.

Figure S4. a) Structural schematic for surface area calculation. b) Surface area enhancement with different pitches of 0.5 μ m, 1 μ m, 1.2 μ m, 1.5 μ m as compared with planar structure.

Figure S5. a) XPS spectra of Mn 2p, two peaks are at 641.9 eV (Mn $2p_{3/2}$) and 653.7 eV (Mn $2p_{1/2}$). b) XPS spectra of Au 4f, the peaks at 83.6 eV (Au $4f_{7/2}$), and 87.25 eV (Au $4f_{5/2}$) are from gold metal achieved by sputtering deposition. c) Wide angle of XRD patterns of MnO₂ and Au.

Figure S6. a-f) SEM images of MAMNSPs electrodes with different electrodeposition time (5 s,

15 s, 30 s, 45 s, 60 s, and 120 s).

Figure S7. a) CV curves of MAMNSPs electrode with different deposition time (5 s - 120 s) at the scan rate of 100 mV s⁻¹. b) Areal capacitance as a function of scan rate with different deposition time.

Figure S8. a) CV curves of MAMNSPs electrode with 45 s deposition at different scan rate (300 mV s⁻¹ - 500 mV s⁻¹). b) GCD curves of MAMNSPs electrode with 45 s deposition at different current density (0.3 mA cm^{-2} - 5 mA cm⁻²).

Surface Area Calculation

As shown in Figure S4a, the geometry of Au NSPs consists of a tetrahedron and fourfold oneeighth sphere. Surface area ($S \text{ cm}^{-2}$) of Au NSPs in an 1 cm⁻² projected area can be calculated using the following equation:

$$S = \frac{4}{p^2} \left(\frac{LH}{2} + \frac{4\pi R^2}{8} \right)$$
(1)

Where *P* is the bottom center-center distance between two neighbouring NSPs, *H* is the height from peak to the valley of each NSP, *L* is the length between two neighbouring valleys of NSPs. *R* is the radius of the sphere. The value of *H* and *R* are measured by SEM, and *L* is achieved by theoretical calculation using the following equations:

$$L = 0.707 P$$
 (2)