Exceptionally highly performing Na-ion battery anode using crystalline SnO₂ nanoparticles confined in mesoporous carbon

Ali Jahel^{a,b,c}, Camélia Matei Ghimbeu^{a,c*,} Ali Darwiche^{b,c}, Loïc Vidal^{a,c}, Samar Hajjar-Garreau^a, Cathie Vix-Guterl^{a,c}, Laure Monconduit^{b,c}

¹ Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS-UHA, 15 rue Jean Starcky, BP 2488, 68057 Mulhouse cedex, France.

² ICG/AIME (UMR 5253 CNRS), Université Montpellier II CC 15-02, Place E. Bataillon,
34095 Montpellier Cedex 5, France.

³ Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 33 Rue Saint Leu, 80039 Amiens Cedex, France

* Corresponding author: Tel : +33(3) 89 60 87 43 E-mail: <u>camelia.ghimbeu@uha.fr</u>

Figure S1: TGA analysis curves for the SnO₂@C-I and SnO₂@C-M composites under air.

Figure S2: TEM pictures of pristine mesoporous carbon (a) along with the (b) SAXS patterns.

Figure S3: TEM pictures of base SnO_2 nano-particles (a) bright and (b) dark field

Figure S4: EDX elemental mapping for SnO₂@C-I composite.

Figure S5: C1s high resolution XPS spectra of (a) SnO₂@C-I and (b) SnO₂@C-M.