Supporting Information

Enabling a High Capacity and Long Cycle Life of Nano-Si Anode by Building a Stable Solid Interface with Li⁺-Conducting Polymer

Shi Zeng^a, Daotan Liu^b, Yao Chen^a, Jiangfeng Qian^a, Yuliang Cao^a, Hanxi Yang^a, and

Xinping Ai^{a*}

^a Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry & Molecular Science, Wuhan University, Wuhan 430072, China ^b China Electric Power Research Institute, Beijing, 100192, China.

*CORRESPONDING AUTHOR: E-mail: xpai@whu.edu.cn

Phone: +86 27-68754526

Fig. S1. FTIR spectra of the Si/PBT composite.

Fig. S2. SEM images of PBT (a) and (b) the Si/PBT composite.

Fig.S3. Charge-discharge profile (a) and (b) cycling performance of the coin-type full cells using the Si/PBT as anode and $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ (NCM) as cathode. The charge-discharge capacities were calculated according to the mass weight of the Si/PBT anode. Charge and discharge currents were set at 500 mA g⁻¹.

Fig.S4. The electrochemical impedance spectra (EIS) of the Si/PBT electrode at different cycles.

Fig.S5. XPS spectra of C 1S (a) and (b) O 1S collected from the surface of Si/PBT electrode at different cycles. The charge/discharge current density is 3 A g^{-1} .

Fig. S6. EIS spectra of the PBT electrode at different charge/discharge states (a) and (b) the relationship between Z_{re} and $\omega^{-0.5}$ at low frequency region

Table S1. The Warburg coefficient derived from EIS spectra (Figure S4) and diffusion coefficient of Li^+ ion in the PBT electrode at different charge and discharge states.

	Discharge (V, vs Li⁺/Li)		Charge (V, vs Li⁺/Li)	
	0.228	0.024	0.313	0.513
σ _w (Ω s ^{-0.5})	9.95	5.02	7.92	12.49
D _{Li} (cm ² S ⁻¹)	2.07×10 ⁻⁹	6.92×10 ⁻¹⁰	1.10×10 ⁻⁸	9.60×10 ⁻⁹