Electronic Supplementary Information

Fig. S1 Optical photographs of GO-bacteria mixture in culture medium at different cultivation time.

Fig. S2 LSV of carbonaceous rGO/ E. coli and commercial Pt/C (20 wt\%) at roatation speed of 1600 rpm

Derivation of electron transfer number

The electron transfer number (n) of ORR is determined based on K-L equation: ${ }^{1,2}$

$$
\begin{gathered}
1 / \mathrm{I}=1 / \mathrm{I}_{\mathrm{L}}+1 / \mathrm{I}_{\mathrm{K}}=1 /\left(\mathrm{B} \omega^{1 / 2}\right)+1 / \mathrm{I}_{\mathrm{K}} \\
\mathrm{~B}=0.2 \mathrm{nF}\left(\mathrm{D}_{0}\right)^{2 / 3} v^{-1 / 6}
\end{gathered}
$$

Where I, I_{L} and I_{K} are the measured current density, diffusion limiting current density and kineticlimiting current density, respectively; ω is the rotation speed in rpm; F is the Faraday constant (96485 C mol^{-1}); D_{0} is the diffusion coefficient of oxygen in $0.1 \mathrm{M} \mathrm{KOH}\left(1.9 \times 10^{-5} \mathrm{~cm} 2 \mathrm{~s}^{-1}\right) ; v$ is the kinetic viscosity ($0.01 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$); and C_{0} is the bulk concentration of oxygen in the solution $\left(1.2 \times 10^{-6} \mathrm{~mol} \mathrm{~cm}^{-}\right.$ ${ }^{3}$).

Tafel Plot

For the Tafel plot, kinetic-limiting current density $\left(\mathrm{I}_{\mathrm{K}}\right)$ is calculated based on mass-transport correction: $I_{K}=I \times I_{L} /\left(I_{L}-I\right)$. And the Tafel equation is given as $\eta=a+b \log I_{k}$, where η is the measured potential vs. $\mathrm{Ag} / \mathrm{AgCl}$.

Fig. S3 Tafel plots of carbonaceous rGO/E.coli and Pt/C obtained at low currents and 1600 rpm , in 0.1 M KOH .

As shown in Figure S3, the Tafel slopes of carbonaceous graphene/E.coli and Pt /C are 79 and 55 mV per decade, respectively. Both values are comparable to the ideal theroretical value of 60 mV per decade for ORR catalyzed by Pt at room temperature. ${ }^{3,4}$

References

1. I. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M. J. Kim, L. M. Dai and J. B. Baek, J Am Chem Soc, 2013, 135, 1386-1393.
2. F. X. Ma, J. Wang, F. B. Wang and X. H. Xia, Chem Commun, 2015, 51, 1198-1201.
3. Y. G. Li, W. Zhou, H. L. Wang, L. M. Xie, Y. Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook and H. J. Dai, Nat Nanotechnol, 2012, 7, 394-400.
4. Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier and H. J. Dai, Nat Mater, 2011, 10, 780-786.
