Electronic Supplementary Information

Fig. S1 Optical photographs of GO-bacteria mixture in culture medium at different cultivation time.

Fig. S2 LSV of carbonaceous rGO/ *E. coli* and commercial Pt/C (20 wt%) at roatation speed of 1600 rpm

Derivation of electron transfer number

The electron transfer number (n) of ORR is determined based on K-L equation: ^{1,2}

$$1/I = 1/I_L + 1/I_K = 1/(B\omega^{1/2}) + 1/I_K$$

B=0.2nF(D₀)^{2/3}v^{-1/6}

Where I, I_L and I_K are the measured current density, diffusion limiting current density and kineticlimiting current density, respectively; ω is the rotation speed in rpm; F is the Faraday constant (96485 C mol⁻¹); D_0 is the diffusion coefficient of oxygen in 0.1 M KOH (1.9×10^{-5} cm2 s⁻¹); v is the kinetic viscosity (0.01 cm2 s⁻¹); and C_0 is the bulk concentration of oxygen in the solution (1.2×10^{-6} mol cm⁻³).

Tafel Plot

For the Tafel plot, kinetic-limiting current density (I_K) is calculated based on mass-transport correction: $I_K=I \times I_L/(I_L-I)$. And the Tafel equation is given as $\eta=a + blogI_k$, where η is the measured potential *vs*. Ag/AgCl.

Fig. S3 Tafel plots of carbonaceous rGO/E.coli and Pt/C obtained at low currents and 1600 rpm, in 0.1 M KOH.

As shown in Figure S3, the Tafel slopes of carbonaceous graphene/*E.coli* and Pt /C are 79 and 55 mV per decade, respectively. Both values are comparable to the ideal theroretical value of 60 mV per decade for ORR catalyzed by Pt at room temperature. 3,4

References

- 1. I. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M. J. Kim, L. M. Dai and J. B. Baek, *J Am Chem Soc*, 2013, **135**, 1386-1393.
- 2. F. X. Ma, J. Wang, F. B. Wang and X. H. Xia, *Chem Commun*, 2015, **51**, 1198-1201.
- 3. Y. G. Li, W. Zhou, H. L. Wang, L. M. Xie, Y. Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook and H. J. Dai, *Nat Nanotechnol*, 2012, 7, 394-400.
- 4. Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier and H. J. Dai, *Nat Mater*, 2011, **10**, 780-786.