Supplementary Information for:

Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated with reduced graphene oxide

Tomiko M. Suzuki,*a Akihide Iwase,^b Hiromitsu Tanaka,^a Shunsuke Sato,^a

Akihiko Kudo*b and Takeshi Morikawa a

^a Toyota Central R & D Labs, Inc., 41-1 Nagakute, Aichi 480-1192, Japan

^b Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3

Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Fig. S1 Structures of Ru-complexes.

Fig. S2 XRD patterns of SrTiO₃:Rh (Rh: *x* at%) powders prepared by solid state reaction.

Fig. S3 Current-potential curves for SrTiO₃:Rh (*x* at%) at x = (a) 0, (b) 1, and (c) 4 at%. Electrolyte, 0.2 mol L⁻¹ aqueous K₂SO₄ solution; sweep rate, 50 mV s⁻¹; light source, 300 W Xe lamp with an L42 cutoff filter ($\lambda > 420$ nm). The SrTiO₃:Rh photocatalyst electrodes were prepared by a squeegee method, where a paste composed of 20 mg of SrTiO₃:Rh photocatalyst powder, 20 µL of acetylacetone (Wako Pure Chemical Industries, 99%), and 40 µL of distilled water was coated onto a transparent fluorine-doped tin oxide (FTO) electrode and then calcined at 573 K for 2 h in air.

Fig. S4 DRIFTS spectra for (a) SrTiO₃:Rh (4 at%) and (b) [Ru-dpbpy]/SrTiO₃:Rh (4 at%).

Fig. S5 TOF-SIMS positive spectra for (a) SrTiO₃: Rh (4 at%) and (b) [Ru-dpbpy]/SrTiO₃: Rh (4 at%).

Fig. S6 TOF-SIMS negative spectra for (a) SrTiO₃: Rh (4 at%) and (b) [Ru-dpbpy]/SrTiO₃:Rh (4 at%).

Fig. S7 TOF-SIMS positive spectra after photocatatalytic reaction (18 h) for the (a) (SrTiO₃:Rh)-(RGO/BiVO₄) and (b) ([Ru-dpbpy]/SrTiO₃:Rh)-(RGO/BiVO₄) systems. The Rh content of SrTiO₃:Rh is 4 at%. Reaction condition: catalysts (8 mg each) in 4 mL Ar-saturated water (pH 3.5 adjusted by H₂SO₄), at ambient temperature. Suspensions were irradiated using a 500 W Xe lamp with filters to produce light in the range of $390 < \lambda \le 750$ nm.

Fig. S8 Rh 3d XPS spectra for (a) before photocatalytic reaction and (b) after photocatalytic reaction for 18 h of ([Ru-dpbpy]/SrTiO₃:Rh)-(RGO/BiVO₄) system. The Rh content of SrTiO₃:Rh is 4 at%. Reaction condition: catalysts (8 mg each) in 4 ml Ar-saturated water (pH 3.5 adjusted by H₂SO₄), at ambient temperature. Suspensions were irradiated using a 500 W Xe lamp with filters to produce light in the range $390 < \lambda \le 750$ nm filter.

Fig. S9 Z-potential of [Ru-dpbpy]/SrTiO₃:Rh (4 at%, closed mark) and RGO/BiVO₄ (open mark) powder suspended in an aqueous solution.

Z-potential measurements were conducted using Zeta potential analyzer (MICROTEC ZEECOM ZC-2000).

Table S1 Photocatalytic activity under visible light irradiation of the ([Ru-dpbpy]/SrTiO3:Rh<4 at%>)-(RGO/BiVO4) system in a aqueous solution. ^a

entry	pН	Z-pote	ntial (mV)	amount of H ₂
		[Ru-	(RGO/BiVO ₄)	evolved/µmol
		dpbpy]/SrTi		
		O ₃ :Rh		
1	2.4	+ 9.8	+ 3.5	0.24
2	3.5	+10.2	-19.3	3.14
3	4.0	+6.3	-31.0	3.00
4	7.0	-35.0	-41.5	1.59

^a Reaction condition: catalysts (8 mg each) in 4 ml Ar-saturated aqueous solution (various pH) in a Pyrex glass test tube, at ambient temperature. pH adjusted with H₂SO₄ and NaOH. Solutions ware irradiated using a 500 W Xe lamp with filters to produce light in the range 390 < $\lambda \le 750$ nm filter 18 h. Hydrogen concentration was determined by gas chromatography.

amount of doped	[Ru-dpbpy] ^b	Amount of H ₂ evolved
Rh (at%)	(0.18-0.19 wt%)	(µmol)
0	×	0.00
0	0	0.00
0.5	×	0.01
0.5	0	0.79
1	×	0.02
1	0	1.83
4	×	0.42
4	0	3.06
7	×	0.75
7	0	2.82

Table S2 Photocatalytic H₂ evolution by water splitting under visible light irradiation over the (Ru-complex/SrTiO₃:Rh)-(RGO/BiVO₄) system.^a

^a Reaction condition: catalysts (8 mg each) in 4 ml Ar-saturated water (pH3.5 adjusted by H₂SO₄), at ambient temperature. Suspensions were irradiated using a 500 W Xe lamp with filters to produce light in the range $390 < \lambda \le 750$ nm filter 18 h.

^b [Ru (4,4'-diphosphonate-2,2'-bipyridine)(2,2'-bipyridine)(CO)₂]²⁺

Fig. S10 TOF-SIMS negative spectra (a) before photoirradiation and (b) after photoirradiation (16 h) of the ([Ru-dpbpy]/SrTiO₃:Rh)–(RGO/BiVO₄) in a gas closed-circulation system. The Rh content of SrTiO₃:Rh is 4 at%. Reaction Conditions: catalysts (50 mg each) in water (pH 3.5 adjusted by H₂SO₄, 120 ml), $\lambda > 420$ nm (300 W Xe lamp), top-irradiation cell with a Pyrex glass window.

Fig. S11 TOF-SIMS positive spectra (a) before photoirradiation and (b) after photoirradiation (16 h) over the ([Ru-dpbpy]/SrTiO₃:Rh)–(RGO/BiVO₄) in a gas closed-circulation system. The Rh content of SrTiO₃:Rh is 4 at%. Reaction Conditions: catalysts (50 mg each) in water (pH 3.5 adjusted by H₂SO₄, 120 ml), $\lambda > 420$ nm (300 W Xe lamp), top-irradiation cell with a Pyrex glass

window.