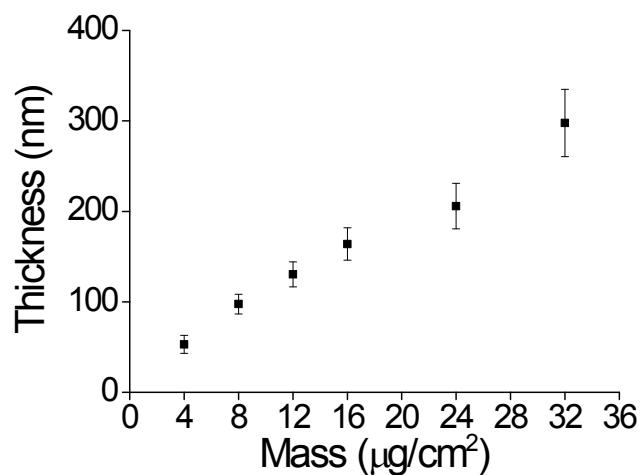
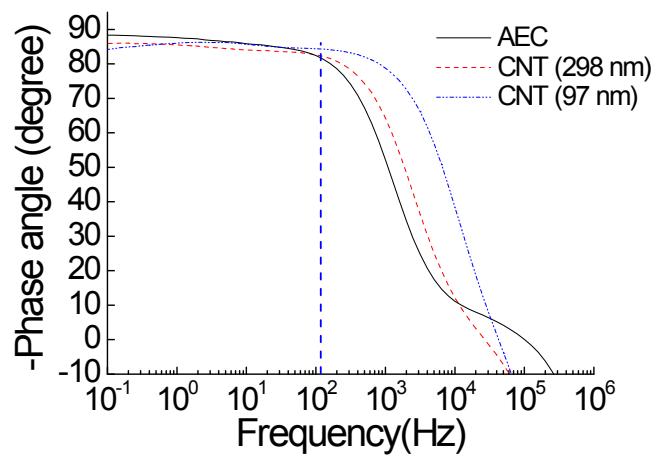


Supporting Information


2.5 V Compact Supercapacitors Based on Ultrathin Carbon Nanotube Films for AC Line Filtering

Yongju Yoo,^a Seungwook Kim,^b Byungwoo Kim,^a and Woong Kim*^a


^aDepartment of Materials Science and Engineering, Korea University, Seoul 136-713, Republic of Korea

^bDepartment of Nano-Semiconductor Engineering, Korea University, Seoul 136-713, Republic of Korea

E-mail: woongkim@korea.ac.kr

Fig. S1. The relationship between the thickness and mass of CNT films.

Fig. S2. Bode phase plots of CNT supercapacitors and an AEC. The numbers in parentheses are the thickness of the CNT films.

Equations

$$C_{vol} = \frac{I}{\frac{dv}{dt} \times 2 \times \text{volume of single electrode material}}$$

$$E_{vol} = \frac{1}{2 \times 3.6} C_{vol} V^2$$

$$P_{vol} = \frac{E_{vol} \times 3.6}{\Delta t}$$

$$\tau_{RC} = R_{120\ Hz} \times C_{120\ Hz}$$

$$R_{120\ Hz} = Z'_{120\ Hz}$$

$$C_{vol, 120\ Hz} = \frac{C_A}{2 \times \text{thickness of single electrode material}}$$

$$C'' = \frac{Z'}{2\pi f \cdot |Z|^2}$$

$$C_{areal} = \frac{-1}{2\pi f S Z''}$$

S = area of an electrode