Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

A Comparative Study on the Oxidation State of Lattice Oxygen

among Li_{1.14}Ni_{0.136}Co_{0.136}Mn_{0.544}O₂, Li₂MnO₃, LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ and

LiCoO₂ for the Initial Charge-Discharge

Shaojie Han ^{a,b}, Yonggao Xia ^{a,*}, Zhen Wei^a, Bao Qiu^a, Lingchao Pan^a, Qingwen Gu^a,

Zhaoping Liu^{a,*}, Zhiyong Guo^b

^a Ningbo Institute of Materials Technology and Engineering, Chinese Academy of

Sciences, Zhejiang 315201, P. R. China.

^b The School of Material Science and Chemical Engineering, Ningbo University,

Zhejiang 315211, P. R. China

^{*} Corresponding authors. Tel./Fax: +86-574-8668-5096.

E-mail addresses: xiayg@nimte.ac.cn (Y. Xia), liuzp@nimte.ac.cn (Z. Liu).

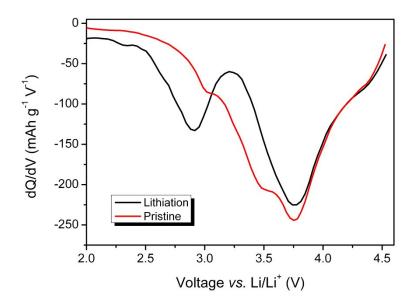


Fig. S1 Differential discharge capacity (dQ/dV) plots of the pristine sample and the sample recovered after chemical lithiation for $Li_{1.14}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2$.

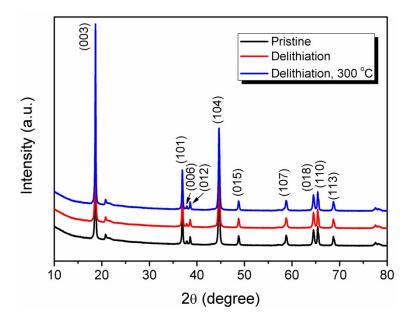


Fig. S2 XRD patterns for $Li_{1.14}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2$, from top to bottom, the patterns collected from the pristine sample, the sample recovered after chemical delithiation and the sample recovered after chemical delithiation and annealing at 300 °C. The scan rate used here is 0.4° min⁻¹.

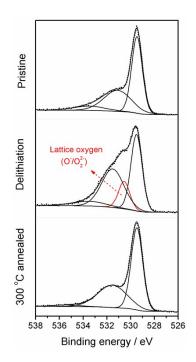


Fig. S3 XPS spectra for $Li_{1.14}Ni_{0.136}Co_{0.136}Mn_{0.544}O_2$, from top to bottom, the spectra collected form the pristine sample, the sample recovered after chemical delithiation and the sample recovered after chemical delithiation and annealing at 300 °C.