Electronic Supplementary Information

One-step hydrothermal synthesis of monolayer MoS₂ quantum dots for highly efficient electrocatalytic hydrogen evolution

Xianpei Ren¹, Liuqing Pang¹, Yunxia Zhang¹, Xiaodong Ren¹, Haibo Fan^{1, 3} and Shengzhong Liu^{1, 2,*}

¹Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of

Education; Institute for Advanced Energy Materials, School of Materials Science and

Engineering, Shaanxi Normal University, Xi'an 710119, China

²Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy,

Chinese Academy of Sciences, Dalian, 116023, China

³School of Physics, Northwest University, Xi'an 710069, China

*Corresponding author. E-mail: szliu@dicp.ac.cn; Tel: +86-29-8153-0785

Experimental Section

Reagents and materials

Sodium molybdate, dibenzyl disulfide and bulk MoS₂ powders were purchased from Aladdin Industrial Inc. H₂SO₄ was purchased from Tianjin Fuyu Chemical Reagent Co. Ltd., China. Pt and glassy carbon electrodes were purchased from Tianjin Aidahengsheng Technology. Co. Ltd., China. All chemicals were used as received without special purification. The water used throughout all experiments was deionized (DI) water purified through a Millipore system.

Preparation of MoS₂ QDs

In brief, 0.4 g of Na₂MoO₄·2H₂O was dissolved in 30 mL of water with ultrasonication for 20 min. Then, 0.38 g of dibenzyl disulfide and 30 mL of ethanol were added to the solution followed by ultrasonication for 30 min. The mixture was then transferred into a 100 mL Teflon-lined stainless steel autoclave and maintained at 220 °C for 18 h. Upon cooling naturally to room temperature, drain the mother liquor and add new DI water into the autoclave. The resulting suspension was then centrifuged for 60 min at 12 000 rpm to separate the supernatant and centrifugate. The light brown supernatant (Fig. 1a) was MoS₂ QDs and the centrifugate (Fig. 1b) was the composite of MoS₂ QDs and micro-sized particles.

Characterization

The Transmission electron microscopy (TEM) images were taken with a JEM-2100. Field emission scanning electron microscope (FESEM) were performed on SU8020. Atomic force microscopy (AFM) images were obtained by using a Bruker Multimode 8 in the tapping mode after the samples were deposited on a freshly cleaved mica surface by drop-casting method. X-ray photoelectron spectroscopy (XPS) experiments were conducted using an AXISULTRA X-ray photoelectron spectrometer using Al K α as the exciting X-ray source. X-ray diffraction (XRD) was acquired by a SmartLab X-ray diffraction system. Photoluminescence (PL) spectra were carried out with a Hitachi F-7000 spectrophotometer. Ultraviolet-visible (UV–vis) spectroscopy was recorded on a Hitachi U-3900 spectrophotometer. Raman spectra were measured using a Renishawin Via micro-Raman spectrometer with the excitation laser line at 532 nm.

Electrochemical characterization

Electrochemical measurements were carried out with a computer-controlled IM6ex (Zahner, Germany) in a standard three-electrode cell using Ag/AgCl (in 3.5 M KCl solution) electrode as the reference electrode, a platinum foil as the counter electrode and a glassy carbon (GC) electrode modified by MoS₂ as the working electrode. The MoS₂ QD electrode was prepared as follows: (1) 80 μ L Nafion solution (5 wt%) was dispersed in 1 mL MoS₂ QDs solution by sonicating for 10 min to form a homogeneous solution; (2) 5 μ L portion of the resulting solution was drop cast onto a GC electrode with 3 mm diameter by a microliter syringe and dried at room temperature. The bulk MoS₂ electrode was prepared as follows: (1) 4 mg of sample and 80 μ L Nafion solution (5 wt%) were dispersed in 1 mL water using sonication for 1 h to form a homogeneous ink; (2) This step is same as the preparation of MoS₂ QD electrode. The electrochemical impedance spectroscopy (EIS) was carried out in the

same configuration at η =0.3 V from 10⁻² to 10⁶ Hz with an AC voltage amplitude of 5 mV.

Fig. S1. High-resolution XPS of (a) Mo 3d and (b) S2p spectra of the MoS₂ QDs.

Fig. S2. (a) XRD patterns of MoS_2 QDs and bulk MoS_2 . (b) Raman spectra recorded using a 532 nm laser for MoS_2 QDs and bulk MoS_2 .

		Onset	Tafel	
Catalyst		potential	slope	References
		(mV)	(mV/dec)	
Regular MoS ₂	Defect-free MoS ₂	-180	87	[37]
	Nanosheets			
	Nanosized bulk MoS ₂	-0.280	82	[38]
	Pure MoS ₂ nanoparticles	-0.160	77	[39]
	Defect-rich MoS ₂	-120	50	[37]
Structural	nanosheets			
modified MoS ₂	Disorder engineering in	-120	55	[40]
	oxygen-incorporated MoS ₂			
MoS ₂ /conductive	MoS ₂ /Graphene/Ni-foam	-109	42.8	[41]
substrates	MoS ₂ /RGO	-100	41	[42]
composites	MoS ₂ /CNF mats	-120	45	[43]
	MoS ₂ QDs	-160	58	This work

Table S1. Comparion of HER performance in acidic media for MoS_2 QDs with other MoS_2 -based HER electrocatalysts.

RGO: Reduction graphene oxide

CNF: Carbon fiber foam