Nanocolumnar 1-dimesnional TiO₂ photoanodes deposited by PVD-OAD for perovskite solar cells fabrication

F. Javier Ramos^a, Manuel Oliva-Ramirez^b, Mohammad Khaja Nazeeruddin^{c,d} Michael Grätzel^d, Agustín R. González-Elipe^b and Shahzada Ahmad^a*

Figure S1. Current density-voltage performance of the PV devices employed in the study the different forming perovskite conditions over nanocolumnar 300nm thick TiO₂ photoanodes. [Pbl₂]=1M, concentration of MAI = 10mg/mL at simulated AM1.5G solar irradiation of 99.3mW·cm⁻² (red dotted line). [Pbl₂]=1M, concentration of MAI = 8mg/mL at simulated AM1.5G solar irradiation of 98.1mW cm⁻² (red solid line). [Pbl₂]=1.25M, concentration of MAI = 10mg/mL at simulated AM1.5G solar irradiation of 98.1mW cm⁻² (red solid line). [Pbl₂]=1.25M, concentration of MAI = 10mg/mL at simulated AM1.5G solar irradiation of 99.3mW·cm⁻² (yellow dotted line). [Pbl₂]=1.25M, concentration of MAI = 8mg mL⁻¹ at simulated AM1.5G solar irradiation of 99.6mW·cm⁻² (yellow solid line). [Pbl₂]=1.35M, concentration of MAI = 8mg mL⁻¹ at simulated AM1.5G solar irradiation of 99.6mW·cm⁻² (green solid line). [Pbl₂]=1.45M, concentration of MAI = 8mg/mL at simulated AM1.5G solar irradiation of 98.7mW cm⁻² (blue solid line).

Table S1. Photovoltaic performance of the previous works published using 1-dimensional TiO_2 photoanode structures for perovskite-sensitized solar cells.

Ref.	Photoanode	Perovskite	HTM	TiO ₂ photoanode thickness (nm)	J _{sc} (mA·cm⁻²)	V _{oc} (mV)	FF	PCE (%)
Qiu et al. ^[30]	TiO ₂	CH ₃ NH ₃ PbI ₃	Spiro-	1500	10.67	740	0.54	4.29
	nanowires	CH ₃ NH ₃ PbI _{3-x} Br _x	OMeTAD	1500	10.12	820	0.59	4.87
Kim et al. ^[31]	TiO₂ nanorod (rutile)	CH ₃ NH ₃ PbI ₃	Spiro- OMeTAD	560	15.6	955	0.63	9.4
				920	12.6	929	0.62	7.3
				1580	11.2	865	0.61	5.9
Dharani et al. ^[32]	TiO ₂ nanofiber	CH ₃ NH ₃ PbI ₃	Spiro- OMeTAD	413	15.88	980	0.63	9.82
				844	6.41	780	0.66	3.32
				1215	5.14	740	0.66	2.49
Jiang et al. ^[33]	TiO₂ nanowires (rutile)	CH ₃ NH ₃ Pbl ₃		400	18.6	850	0.62	9.7
			Spiro-	600	20.4	780	0.68	10.8
			OMeTAD	900	22.3	770	0.68	11.7
				1200	9.3	720	0.71	4.8
Lee et al. ^[34]	TiO₂ nanohelix	HC(NH ₂) ₂ PbI ₃	Spiro- OMeTAD	400	19.88	912	0.66	12.03

Table S2. Optimization of the perovskite recipe employed over the 1-dimensional nanocolumnar TiO_2 films to obtain the optimum conditions. The concentration of the PbI_2 and the MAI solutions is tuned and the short-circuit current (J_{SC}), open-circuit voltage (V_{OC}), the fill factor and the power conversion efficiency were reported at 0.1 sun and 1 sun keeping constant the thickness and evaporation angle of the photoanodes on angle (α).

Thickness	α	[Pbl ₂]	MAI	Sun	J _{SC}	Voc	FF	Efficiency
(nm)	(º)	(M)	concentration		(mA·cm⁻²)	(mV)		(%)
			(g mL ⁻¹)					
300	70	1	10	0.1	1.69	785.9	0.669	9.13
				1	16.89	907.2	0.604	9.31
300	70	1	8	0.1	1.87	754.4	0.690	9.95
				1	18.59	872.7	0.597	9.88
300	70	1.25	10	0.1	1.27	901.9	0.537	6.37
				1	12.10	994.9	0.569	6.89
300	70	1.25	8	0.1	1.81	830.4	0.671	10.39
				1	18.25	949.0	0.588	10.22
300	70	1.35	8	0.1	1.88	761.2	0.630	9.31
				1	18.84	885.0	0.594	9.95
300	70	4.45	8	0.1	1.68	791.3	0.568	7.77
		1.45		1	16.43	906.3	0.558	8.42

Figure S2: Transient photocurrent experiments for different thickness and porosity of nanocolumunar TiO₂. A linear behavior is observed, as the expected photocurrent at full sun (dashed lines) matches quite well with the observed photocurrent at 1 Sun. Here a relatively, slow response was observed in devices made from 500 nm thick NC-TiO₂ (black line) that is attributed due to the higher thickness of photoanode. Similarly for the 300nm (α =85°) a marginally exponential increase was observed. Both for 300nm (α =70°) and 200nm (α =85°) the behavior was much more flat showing a better photo-transient response that is in agreement with the efficient devices reported elsewhere.

Histograms of the fabricated devices with different thickness and deposition angle (porosity). The thickness was varied from 200-500 nm while the deposition angle was switched between 85° and 70°.

NC-TiO₂ 200nm 70°

