Supporting information for:

Synthesis and Study of Electrochemical and Optical Properties of Substituted Perylenemonoimides in Solutions and on Solid Surfaces

Zafar Ahmed, Lijo George, Arto Hiltunen, Helge Lemmetyinen, Terttu Hukka, Alexander Efimov *

Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland.

E-mail: alexandre.efimov@tut.fi

Table of Contents:

Structures of compounds	S3
NMR Data	S4 - S8
MS Data	.S9 – S13
DPV Voltammograms	14 - S18
Computational Data	S18 – S37

Figure S1. DPV Voltammogram of compound 1 vs ferrocene

Figure S2. DPV Voltammogram of compound 2 vs ferrocene

Figure S3. DPV Voltammogram of compound 3 vs ferrocene

Figure S4. DPV Voltammogram of compound 5 vs ferrocene

Figure S5. DPV Voltammogram of compound 6 vs ferrocene

Computational energies

Table S1 Energies E (in eV) of the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) of the molecular models of compounds $1-3^{\circ}$ and the corresponding HOMO–LUMO gap energies $E_{(L-H)}$ calculated at various levels of density functional theory (DFT).

	1			2			3		
Functional/	E _{HOMO}	ELUMO	$\Delta E_{(L-H)}$	E _{HOMO}	ELUMO	$\Delta E_{(L-H)}$	E _{HOMO}	ELUMO	$\Delta E_{(L-H)}$
basis set	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
B3LYP/									
6-31G(d)	-5.7359	-3.0752	2.66	-5.2039	-2.7380	2.47	-4.9316	-2.4665	2.47
6-311+G(d,p)	-6.0671	-3.4551	2.61	-5.5142	-3.0980	2.42	-5.2429	-2.8180	2.42
6-311++G(d,p)	-6.0668	-3.4545	2.61	-5.5139	-3.0978	2.42	-5.2426	-2.8178	2.42
M062X/									
6-31G(d)	-6.8810	-2.3780	4.50	-6.3082	-2.0556	4.25	-6.0290	-1.7894	4.24
6-311++G(d,p)	-7.1452	-2.7056	4.44	-6.5460	-2.3614	4.18	-6.2671	-2.0833	4.18

^{*a*}In the models of 1-3 the octyl- and butyl chains have been replaced by the CH₃ groups.

Table S2 Total energies E_{TOT} (in Hartree) of the molecular models of compounds $1-3^{\circ}$ and the relative energies (in kJ/mol) between the 1,7- and 7,12-substituted isomers calculated at various levels of density functional theory (DFT).

	1 neutral	1 radical anion	2 neutral	2 radical anion	3 1, 7-substituted	3 7, 12-substituted	3 7, 12-substituted-		
							1, 7-substituted		
Functional/	Ετοτ								
basis set	(Hartree)								
B3LYP/									
6-31G(d)	-1545.3166772	-1545.3886086	-1756.7009631	-1756.7641427	-1968.0837178	-1968.0828523	+2.27		
6-311+G(d,p)	-1545.7127660	-1545.8005522	-1757.1509143	-1757.2291864	-1968.5868644	-1968.5861952	+1.76		
6-311++G(d,p)	-1545.7130325	-1545.8008173	-1757.1512723	-1757.2295545	-1968.5873005	-1968.5866379	+1.74		
M062X/									
6-31G(d)	-1544.7220569	-1544.7951974	-1756.0187827	-1756.0829605	-1967.3141574	-1967.3133058	+2.24		
6-311++G(d,p)	-1545.1285063	-1545.2150818	-1756.4815679	-1756.5583731	-1967.8028771	-1967.8319400	-76.3		
							= the 7,12-		
							substituted		
							model is		
							thermo-		
							dynamical-		
							ly more		
							stable than		
							the 1,7-		
							substituted		
							model		

"In the models of 1-3 the octyl- and butyl chains have been replaced by the CH₃ groups. No imaginary frequencies were found after geometry optimization at the B3LYP/6-31G(d) level of theory.

Computational atomic charges

Molecular structures have been visualized using the ChemCraft 1.7 program.¹

Figure S6. Atomic charges of model 1 (neutral) computed with the Merz–Kollman (M-K) method at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S7. Atomic charges of model 1 (radical anion) computed with the Merz–Kollman (M-K) method at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S8. Atomic charges of model 2 (neutral) computed with the Merz–Kollman (M-K) method at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S9. Atomic charges of model 2 (radical anion) computed with the Merz–Kollman (M-K) method at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S10. Atomic charges of model **3** (neutral, 1,7-substituted isomer) computed with the Merz–Kollman (M-K) method at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S11. Atomic charges of model 3 (neutral, 7,12-substituted isomer) computed with the Merz–Kollman (M-K) method at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S12. Atomic charges of model 1 (neutral) computed with the Merz–Kollman (M-K) method at the M062X/6-311++G(d,p)//M062X/6-311++G(d,p) level of theory.

Figure S13. Atomic charges of model 1 (radical anion) computed with the Merz–Kollman (M-K) method at the M062X/6-311++G(d,p)//M062X/6-311++G(d,p) level of theory.

Figure S14. Atomic charges of model 2 (neutral) computed with the Merz–Kollman (M-K) method at the M062X/6-311++G(d,p)//M062X/6-311++G(d,p) level of theory.

Figure S15. Atomic charges of model 2 (radical anion) computed with the Merz–Kollman (M-K) method at the M062X/6-311++G(d,p)//M062X/6-311++G(d,p) level of theory.

Figure S16. Atomic charges of model **3** (neutral, 1,7-substituted isomer) computed with the Merz–Kollman (M-K) method at the M062X/6-311++G(d,p)//M062X/6-311++G(d,p) level of theory.

Figure S17. Atomic charges of model 3 (neutral, 7,12-substituted isomer) computed with the Merz–Kollman (M-K) method at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S18. Electrostatic potential surface of model 2 (neutral, substitution at 7 position) showing the electronegative areas in red. Electrostatic potential map tells which areas (red) are more prone to an electrophilic attack. Computed at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S19. Electron density together with the HOMO orbital of model 2 (neutral, substitution at 7 position) showing the positions prone to an electrophilic attack. Computed at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S20. Electron density together with the LUMO orbital of model 2 (neutral, substitution at 7 position) showing the positions prone to a nucleophilic attack. These areas may accept electrons due to an empty orbital. Computed at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S21. Electrostatic potential surface of model 2 (radical anion, substitution at 7 position) showing the electronegative areas in red. Electrostatic potential map tells which areas (red) are more prone to an electrophilic attack. Computed at the B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S22. Electron density map and the HOMO of the model 2 (radical anion, substitution at 7 position) showing the positions prone to an electrophilic attack. The arrow indicates the 12-position.Computed at the B3LYP/6-311++G(d,p)/B3LYP/6-311++G(d,p) level of theory.

References for Supporting Information and for the Figure 1 inside the main article.

1. <u>http://www.chemcraftprog.com</u>