Supporting information for

Freestanding CNT-WO3 Hybrid Electrodes for

Flexible Asymmetric Supercapacitors

Peng Sun^a, Zewei Deng^b, Peihua Yang^a, Xiang Yu^c, Yanli Chen^a, Zhimin Liang^a, Hui Meng^a, Weiguang Xie^a, Shaozao Tan^b*, Wenjie Mai^a*

^{*a*} Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou, Guangdong 510632, China.

^b Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China.

^c Analytical and Testing Center, Jinan University, Guangzhou 510632, China

Address corresponding to wenjiemai@gmail.com (WJM)

Experimental section

Preparation of the freestanding CNTs electrode and CNT-WO₃ electrode

Freestanding CNT film was fabricated *via* a vacuum filtration method. 0.050 g CNTs and 0.2 g sodium dodecylbenzenesulfonate were dissolved into 150 mL deionized (DI) water and ultrasonicated for 20 min, forming a CNTs ink.¹ Then the as-prepared solution vacuum filtered through a filter membrane (220 nm pore size) with DI water washed can be transferred to a freestanding film on the membrane, which then be dried and peeled off to gain the freestanding CNTs electrode. The CNT films were then vacuum evaporated using WO₃ particle powder (Aladdin, 50 nm, 15m² g⁻¹, 99.9%) in a physical vapor deposition system (Baoke, Shenyang) in which the working conditions were a pressure of 3.5×10^{-4} Pa in the chamber and a definite current of 100 amperes for 30min.²

Fabrication of the all-solid-state CNTs// CNT-WO3 ASC device

The ASC device was assembled by CNT film as the positive electrode and CNT-WO₃ hybrid film as the negative electrode using H_2SO_4/PVA gel as a solid state electrolyte and separator (NKK TF40, 40 µm thickness, low ESR type, purchased from SCM industrial Chemical CO., LTD). The H_2SO_4/PVA gel electrolyte was prepared by mixing 6 g concentrated H_2SO_4 and 6 g PVA powder in 60 mL deionized water and being heated at 85 °C under a constant stir for 2 h. CNTs, CNT-WO₃ electrodes and the separator were dipped in the electrolyte for 5 min each and then fabricated into the ASC device. Finally the device should be retained at a room temperature to evaporate excess water overnight (about 12 h).

Characterization:

The structural properties of electrode materials were characterized by field-emission scanning electron microscopy (SEM, ZEISS ULTRA 55), transmission electron microscopy (TEM, JEOL 2100F, 200 kV) equipped with an energy dispersive X-ray spectrometer (EDS), X-ray diffraction (XRD, Rigaku, MiniFlex600, Cu K α) and X-ray Photoelectron Spectroscope (XPS, Ulvac-Phi, PHI X-tool). Electrochemical measurements were employed using a CHI660E electrochemical workstation and a VersaSTAT 3-400 (Princeton Applied Research). The cycle life was measured through a battery test system (Neware BTS). For a single electrode test, a piece of electrode (effective area 1 cm × 1 cm, *ca*. 1 cm²) was dipped into the 1 M H₂SO₄ solution as a working electrode at room temperature. Ag/AgCl reference electrode and graphite rod counter electrode were used in the measurement.

Calculation methods

ASC device

The volumetric capacitance C_v was calculated from the CV curves through the following equation:

$$C_v = \frac{\int I dU}{2vVU_w} = \frac{S}{2vVU_w}$$

where v is the scan rate, V the volume of the whole device, S the area of the closed CV curve and U_w is the voltage window.

And the energy density and the average power density can be gained by employing the following equation:

$$E = \frac{C_v U_w^2}{2}$$
$$P = \frac{E}{t}$$
$$t = \frac{U_w}{v}$$

in which C_v is the volumetric capacitance calculated before.³

Fig.S1 (a) Areal capacitances (C_a) and Ca contribution per 10 µm of CNT-WO₃ electrodes with

different thickness of WO₃ calculated from the corresponding CV curves at a scan rate of 50 mV/s. (b) Equivalent resistances (R_s) calculated from IR drops from the Galvanostatic charge-discharge curves of different WO₃ thickness at a current density of 5 mA/cm².

Fig.S2 CV curves of the (a) CNT-WO₃ electrode compared with the pure CNT electrode under a potential windows between -0.6 V to 0 V at a scan rate of 100 mV/s and (b) positive and negative electrodes at a scan rate of 100 mV/s, representing a proper capacitance ratio for asymmetric supercapacitor.

Fig.S3 (a) Galvanostatic charge-discharge curves of the ASC device collected at different current density. (b) Nyquist plots of the solid-state ASC device.

Fig.S4 Comparison of (a) CV curves at a scan rate of 100 mV/s and (b) Galvanostatic charge-

discharge curves at current density of 1mA/cm² collected from the CNT//CNT-WO₃ ACS device and the CNT//CNT SC device.

Fig.S5 XPS patterns of the CNT-WO₃ films.

Notes and references

1. L. Du, P. Yang, X. Yu, P. Liu, J. Song and W. Mai, J. Mater. Chem. A, 2014, 2, 17561-17567.

2. P. Yang, P. Sun, Z. Chai, L. Huang, X. Cai, S. Tan, J. Song and W. Mai, *Angew Chem Int Ed Engl*, 2014, 53, 11935-11939.

3. P. Yang and W. Mai, Nano Energy, 2014, 8, 274-290.