Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Homodiamine-Functionalized Metal-Organic Frameworks with MOF-74-Type Extended Structure for Superior Selectivity of CO₂ over N₂

Je Seon Yeon,^a Woo Ram Lee,^a Nam Woo Kim,^a Hyuna Jo,^a Hanyeong Lee,^b Jeong Hwa Song,^a Kwang Soo Lim,^a Dong Won Kang,^a Jeong Gil Seo,^b Dohyun Moon,^c Brian Wiers,^d and Chang Seop Hong*^a

a. Department of Chemistry, Korea University, 136-713 Seoul, Republic of Korea.

b. Department of Energy and Biotechnology, Myongji University, 449-728 Yongin, Gyeonggi-do,
 Republic of Korea.

c. Beamline Division, Pohang Accelerator Laboratory, 790-784 Pohang, Kyungbuk, Republic of Korea.

d. Department of Chemistry, University of California, Berkeley, 94720 California, United States.

*To whom correspondence should be addressed.

Tel.: +82 232903138. E-mail: cshong@korea.ac.kr (Chang Seop Hong)

Powder X-ray Diffraction and Structure Modeling. PXRD data were recorded using Cu K α ($\lambda = 1.5406$ Å) on a Rigaku Ultima III diffractometer with a scan speed of 2°/min and a step size of 0.01°. The synchrotron powder X-ray diffraction data were collected at 298K with the 240 mm of detector distance in 2400 s exposure with synchrotron radiation ($\lambda = 1.09998$ Å) using a 2D SMC ADSC Quantum-210 detector with a silicon (111) double crystal monochromator at the Pohang Accelerator Laboratory. The ADX program¹ was used for data collection, and Fit2D program² was used for converting a two-dimensional diffraction image to a one-dimensional diffraction pattern. The unit cell dimension of **1** was determined by conducting a full-pattern decomposition with the Le Bail method (Pawley refinement) implemented in *TOPAS-Academic*. The trigonal space group $P3_221$ was utilized for the refinements, due to the isomorphism with $Zn_2(dobpdc)$.³ Based on the unit cell dimensions obtained, the geometry of the backbones was optimized via an energy minimization algorithm using the universal force field implemented in the *Forcite* module of *Materials Studio*.⁴

Gas Sorption Measurements. Gas sorption isotherms were measured using a Micromeritics ASAP2020 instrument up to 1 atm of gas pressure unless otherwise stated. The highly pure N_2 (99.999%) and CO_2 (99.999%) were used in the sorption experiments. N_2 gas isotherms were measured at 77 K and 298 K, and CO_2 uptake was measured at 298 K, 313 K, and 333 K.

Thermogravimetric Analyses and Gas Cycling Measurements. Thermogravimetric analyses (TGA) were carried out at a ramp rate of 2 °C/min in an Ar (99.999 %) flow using a Scinco TGA N-1000 instrument. CO_2 cycling experiments of the activated 1 were carried out on the instrument with 15% CO_2 in N₂ and Ar (99.999 %). A flow rate of 60 mL/min was applied for all gases. We conducted cycling experiments using fresh samples of 1-en, 1-mmen, and 1-ppz.

Infrared Spectroscopy Measurements. Infrared spectra were obtained with KBr pellets and an air-tight homemade IR cell composed of NaCl windows using a Thermo Nicollet 380 spectrometer. Prior to the IR measurements, N_2 was purged into a sample chamber, a detector, and an IR source to remove CO_2 in air. Variable temperature infrared spectra were collected with a homemade IR cell sandwiched by two CaF₂ windows using a Varian 640-IR spectrometer. For this experiment, N_2 was purged into a sample chamber.

Other Physical Measurement. Elemental analyses for C, H, and N were performed at the Elemental Analysis Service Center of Sogang University.

[Reference]

 A. J. Arvai, C. Nielsen, ADSC Quantum-210 ADX Program, Area Detector System Corporation; Poway, CA, USA, 1983.
 Fit2D Program: Hammersley, A. (E-mail: hammersley@esrf.fr), ESRF, 6 RUE JULES HOROWITZ BP 220 38043 GRENOBLE CEDEX 9 FRANCE.

3. T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong, J. R. Long, *J. Am. Chem. Soc.* **2012**, *134*, 7056-7065. 4. H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, *Science* **2012**, *336*, 1018-1023.

Fig. S1 TGA curves of 1, 1-en, 1-mmen, and 1-ppz.

Fig. S2 N2 adsorption isotherms for 1 at 77 K after evacuation at 250 °C, 270 °C, 280 °C, 300 °C, and 330 °C for 120 min.

	25°C	40°C	60°C
$q_{sat, A}$ / mmol g ⁻¹	4.55211	4.66138	4.42028
b _A / bar-a	0.12351	0.05442	8.07059E-4
$\alpha_{\rm A}$	0.94695	0.93942	0.82142
$q_{sat, \ B} \ / \ mmol \ g^{\text{-}1}$	354.79891	195.5888	4.50301
b _B / bar-a	3.88037E-5	3.66082E-5	0.02182
$\alpha_{ m B}$	0.71665	0.76074	0.94873

Table S1 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO_2 adsorption isotherm for 1 at 25 °C, 40 °C and 60 °C.

Table S2 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO₂ adsorption isotherm for **1-en** at 25 °C, 40 °C and 60 °C.

	25°C	40°C	60°C
$q_{sat, A} / mmol g^{-1}$	762.86421	1.46813	1.76253
b _A / bar-a	2.51115E-5	0.35548	0.18625
$\alpha_{\rm A}$	0.57065	1.15327	0.68145
$q_{sat, B}$ / mmol g ⁻¹	1.63988	12.7984	152.43367
b _B / bar-a	0.4778	0.00271	1.33762E-5
$\alpha_{\rm B}$	1.26149	0.4909	0.78779

	20°C	40°C	60°C
$q_{sat, A} / mmol g^{-1}$	0.02233	0.05694	0.06354
b _A / bar-a	1	6.77	0.5
α_A	1	0.99	1
$q_{sat, B}$ / mmol g ⁻¹	2.9	0.5	1.5
$b_{\rm B}$ / bar-a	0.241	0.53	0.3
$\alpha_{\rm B}$	1	1	1

Table S3 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO₂ adsorption isotherm for **1-mmen** at 25 °C, 40 °C and 60 °C.

Table S4 Modified dual-Site Langmuir-Freundlich parameters for the post-step region of the CO₂ adsorption isotherm for **1mmen** at 25 °C, 40 °C and 60 °C.

	25°C	40°C	60°C
P _{step}	0.07792	0.09255	0.05336
$q_{\text{sat, A}}$ / mmol g ⁻¹	4.1	2.70493	0.46966
b _A / bar-a	2.32603E-20	0.10535	2.0734
α_A	0.98406	1	1
$q_{\text{sat, B}}$ / mmol g-1	8.62966	6.76199	0.60374
$b_{\rm B}$ / bar ^{-a}	0.00227	1.02088E-4	0.05258
$\alpha_{\rm B}$	0.71611	1	0.89334
$q_{\text{sat, C}}$ / mmol g-1	6.54443	0.71149	0.83103
b _C / bar ^{-a}	0.2285	5.60173	0.06285
$\alpha_{\rm C}$	0.55075	0.88648	1

	25°C	40°C	60°C
q _{sat, A} / mmol g ⁻¹	6681.99525	483294	1.42901
b _A / bar-a	1.21065E-6	0.01198	0.10514
α_A	0.72298	0.4687	1.13155
$q_{sat, \ B} \ / \ mmol \ g^{\text{-1}}$	1.64314	1.16535	8.00513
b _B / bar-a	0.48951	0.22381	0.00252
$\alpha_{\rm B}$	1.5	1.67732	0.52483

Table S5 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO₂ adsorption isotherm for **1-ppz** at 25 °C, 40 °C and 60 °C.

Fig. S3 CO₂ isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1 at 25 °C, 40 °C and 60°C.

Fig. S4 CO2 isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1-en at 25 °C, 40 °C and 60°C

Fig. S5. CO2 isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1-mmen at 25 °C, 40 °C and 60°C

Fig. S6. CO2 isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1-ppz at 25 °C, 40 °C and 60°C

Fig. S7 Isosteric heats of adsorption $(-Q_{st})$ as a function of loading for CO₂ in **1**. Inset: Residual sum of squares (R²) for the best fit line of ln*p* versus 1/T as a function of the constant CO₂ loading used in the Clausius-Clapeyron equation.

Fig. S8 Isosteric heats of adsorption ($-Q_{st}$) as a function of loading for CO₂ in **1-en**. Inset: Residual sum of squares (R²) for the best fit line of ln*p* versus 1/T as a function of the constant CO₂ loading used in the Clausius-Clapeyron equation.

Fig. S9 Isosteric heats of adsorption ($-Q_{st}$) as a function of loading for CO₂ in **1-mmen**. Inset: Residual sum of squares (R²) for the best fit line of lnp versus 1/T as a function of the constant CO₂ loading used in the Clausius-Clapeyron equation.

Fig. S10 Isosteric heats of adsorption ($-Q_{st}$) as a function of loading for CO₂ in **1-ppz**. Inset: Residual sum of squares (R²) for the best fit line of lnp versus 1/T as a function of the constant CO₂ loading used in the Clausius-Clapeyron equation.

Fig. S11 (a) In-situ IR data of **1-en**. The cell was heated at 130 °C and then cooled down to 40 °C under N_2 flowing. A stream of 15% CO₂ balanced with N_2 was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S12 (a) In-situ IR data of **1-en**. The cell was heated at 130 °C and then cooled down to 40 °C under N₂ flowing. Humid 15% CO_2 was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S13 (a) In-situ IR data of **1-en**. CO₂ (15%) was flowed into the cell for 10 min and then N₂ was infused into it for different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S14 (a) In-situ IR data of **1-en**. Humid CO₂ (15%) was flowed into the cell for 10 min and then N₂ was infused into it for different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S15 (a) In-situ IR data of **1-mmen**. The cell was heated at 130 °C and then cooled down to 40 °C under N_2 flowing. A stream of 15% CO₂ balanced with N_2 was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S16 (a) In-situ IR data of **1-mmen**. The cell was heated at 130 °C and then cooled down to 40 °C under N_2 flowing. Humid 15% CO₂ was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S17 (a) In-situ IR data of **1-mmen**. CO₂ (15%) was flowed into the cell for 10 min and then N₂ was infused into it for different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S18 (a) In-situ IR data of **1-mmen**. Humid CO₂ (15%) was flowed into the cell for 10 min and then N₂ was infused into it for different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S19 (a) In-situ IR data of **1-ppz**. The cell was heated at 130 °C and then cooled down to 40 °C under N₂ flowing. A stream of 15% CO₂ balanced with N₂ was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S20 (a) In-situ IR data of **1-ppz**. The cell was heated at 130 °C and then cooled down to 40 °C under N₂ flowing. Humid 15% CO₂ was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S21 (a) In-situ IR data of **1-ppz**. CO₂ (15%) was flowed into the cell for 10 min and then N₂ was infused into it for different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S22 (a) In-situ IR data of **1-ppz**. Humid CO₂ (15%) was flowed into the cell for 10 min and then N₂ was infused into it for different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency range.

Fig. S23 TSA cycles of 1-ppz. Adsorption at 15% CO₂ balanced with 85% N_2 and 40 °C for 30 min and desorption at Ar and 130 °C for 30 min were carried out.

Fig. S24 TSA cycles of (a) **1-en**, (b) **1-mmen**, and **1-ppz**. Adsorption at 15% CO₂ balanced with 5% O₂ and 80% N₂, and 40 °C for 30 min and desorption at Ar and 130 °C for 30 min were carried out.

Fig. S25 CO_2 capacity before and after exposure to 500 ppm SO_2 balanced with N_2 .

Fig. S26 Nujol IR data of (a) 1-en, (b) 1-mmen, and 1-ppz before and after exposure to 500 ppm SO₂ in N₂.

Fig. S27 NMR data of (a) 1-en, (b) 1-mmen, and 1-ppz before and after exposure to 500 ppm SO₂ in N₂. Before the measurement, we digested each sample using DMSO- d_6 and 48% HF

Fig. S28 PXRD data of (a) 1-en, (b) 1-mmen, and 1-ppz before and after exposure to 500 ppm SO_2 in N_2

5	8	
N_2 breakthrough time (min/g)	3.2	3.2
CO ₂ breakthrough time (min/g)	22	32
Breakthrough CO_2/N_2 selectivity	6.9	10

Table S6. Selectivity calculated from difference in breakthrough times of CO_2 and N_2 .

_