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Powder X-ray Diffraction and Structure Modeling. PXRD data were recorded using Cu Ko (A = 1.5406 A) on a Rigaku
Ultima III diffractometer with a scan speed of 2°/min and a step size of 0.01°. The synchrotron powder X-ray diffraction data
were collected at 298K with the 240 mm of detector distance in 2400 s exposure with synchrotron radiation (A = 1.09998A)
using a 2D SMC ADSC Quantum-210 detector with a silicon (111) double crystal monochromator at the Pohang Accelerator
Laboratory. The ADX program' was used for data collection, and Fit2D program? was used for converting a two-dimensional
diffraction image to a one-dimensional diffraction pattern. The unit cell dimension of 1 was determined by conducting a full-
pattern decomposition with the Le Bail method (Pawley refinement) implemented in TOPAS-Academic. The trigonal space
group P3,21 was utilized for the refinements, due to the isomorphism with Zn,(dobpdc).? Based on the unit cell dimensions
obtained, the geometry of the backbones was optimized via an energy minimization algorithm using the universal force field
implemented in the Forcite module of Materials Studio.*

Gas Sorption Measurements. Gas sorption isotherms were measured using a Micromeritics ASAP2020 instrument up to 1
atm of gas pressure unless otherwise stated. The highly pure N, (99.999%) and CO, (99.999%) were used in the sorption
experiments. N, gas isotherms were measured at 77 K and 298 K, and CO, uptake was measured at 298 K, 313 K, and 333 K.

Thermogravimetric Analyses and Gas Cycling Measurements. Thermogravimetric analyses (TGA) were carried out at a
ramp rate of 2 °C/min in an Ar (99.999 %) flow using a Scinco TGA N-1000 instrument. CO, cycling experiments of the
activated 1 were carried out on the instrument with 15% CO; in N, and Ar (99.999 %). A flow rate of 60 mL/min was applied
for all gases. We conducted cycling experiments using fresh samples of 1-en, 1-mmen, and 1-ppz.

Infrared Spectroscopy Measurements. Infrared spectra were obtained with KBr pellets and an air-tight homemade IR cell
composed of NaCl windows using a Thermo Nicollet 380 spectrometer. Prior to the IR measurements, N, was purged into a
sample chamber, a detector, and an IR source to remove CO; in air. Variable temperature infrared spectra were collected with a
homemade IR cell sandwiched by two CaF, windows using a Varian 640-IR spectrometer. For this experiment, N, was purged
into a sample chamber.

Other Physical Measurement. Elemental analyses for C, H, and N were performed at the Elemental Analysis Service
Center of Sogang University.
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Fig. S1 TGA curves of 1, 1-en, 1-mmen, and 1-ppz.
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Fig. S2 N, adsorption isotherms for 1 at 77 K after evacuuation at 250 °C, 270 °C, 280 °C, 300 °C, and 330 °C for 120 min.



Table S1 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO, adsorption isotherm for 1 at 25 °C, 40
°C and 60 °C.

25°C 40°C 60°C
Qsat, o / mmol g! 4.55211 4.66138 4.42028
b, / bar? 0.12351 0.05442 8.07059E-4
oA 0.94695 0.93942 0.82142
sat, 8/ mmol g1 354.79891 195.5888 4.50301
bg / bar® 3.88037E-5 3.66082E-5 0.02182
op 0.71665 0.76074 0.94873

Table S2 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO, adsorption isotherm for 1-en at 25 °C,
40 °C and 60 °C.

25°C 40°C 60°C
Qsat, o / mmol g 762.86421 1.46813 1.76253
b, / bar? 2.51115E-5 0.35548 0.18625
oA 0.57065 1.15327 0.68145
sat, 8/ mmol g-! 1.63988 12.7984 152.43367
bg / bar? 0.4778 0.00271 1.33762E-5
op 1.26149 0.4909 0.78779



Table S3 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO, adsorption isotherm for 1-mmen at 25

°C, 40 °C and 60 °C.

20°C 40°C 60°C
Qsat, o / mmol g! 0.02233 0.05694 0.06354
by / bar? 1 6.77 0.5
s | 0.99 1
Qsat, / mmol g 2.9 0.5 1.5
bg / bar? 0.241 0.53 0.3
ap 1 1 1

Table S4 Modified dual-Site Langmuir-Freundlich parameters for the post-step region of the CO, adsorption isotherm for 1-
mmen at 25 °C, 40 °C and 60 °C.

25°C 40°C 60°C
Piep 0.07792 0.09255 0.05336
sat, o / mmol g! 4.1 2.70493 0.46966
b, / bar? 2.32603E-20 0.10535 2.0734
oA 0.98406 1 1
Qsar,  / mmol &1 8.62966 6.76199 0.60374
bg / bar? 0.00227 1.02088E-4 0.05258
op 0.71611 1 0.89334
Qsat, c / mmol &1 6.54443 0.71149 0.83103
bc / bar? 0.2285 5.60173 0.06285
ac 0.55075 0.88648 1




Table S5 Dual-Site Langmuir-Freundlich parameters for the pre-step region of the CO, adsorption isotherm for 1-ppz at 25 °C,
40 °C and 60 °C.

25°C 40°C 60°C
Qsat, o / mmol g! 6681.99525 483294 1.42901
b, / bar? 1.21065E-6 0.01198 0.10514
oA 0.72298 0.4687 1.13155
sat, 8/ mmol g1 1.64314 1.16535 8.00513
bg / bar® 0.48951 0.22381 0.00252
op 1.5 1.67732 0.52483
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Fig. S3 CO, isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1 at 25 °C, 40 °C and 60°C.
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Fig. S4 CO, isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1-en at 25 °C, 40 °C and 60°C
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Fig. SS. CO, isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1-mmen at 25 °C, 40 °C and 60°C
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Fig. S6. CO, isotherms and fits based on a dual-site Langmuir-Freundlich equation for 1-ppz at 25 °C, 40 °C and 60°C
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Fig. S7 Isosteric heats of adsorption (—Qy,) as a function of loading for CO, in 1. Inset: Residual sum of squares (R?) for the
best fit line of Inp versus 1/7T as a function of the constant CO, loading used in the Clausius-Clapeyron equation.
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Fig. S8 Isosteric heats of adsorption (—Qy) as a function of loading for CO, in 1-en. Inset: Residual sum of squares (R?) for the
best fit line of Inp versus 1/T as a function of the constant CO, loading used in the Clausius-Clapeyron equation.



90

80 -
704 . .
- 60_ ] "
2 50-
2 ] 101
2 40 UIN
o’ 30- §0.6—
© 201 £ 04
{ f 02]
10__ 0002 04 06 08 10 12 14 16
0 : : CO, adsorbed / mmol g’

00 03 06 09 12 15
CO, adsorbed / mmol g*

Fig. S9 Isosteric heats of adsorption (—Qy) as a function of loading for CO, in 1-mmen. Inset: Residual sum of squares (R?) for
the best fit line of Inp versus 1/T as a function of the constant CO, loading used in the Clausius-Clapeyron equation.
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Fig. S10 Isosteric heats of adsorption (—Qy) as a function of loading for CO, in 1-ppz. Inset: Residual sum of squares (R?) for
the best fit line of Inp versus 1/T as a function of the constant CO, loading used in the Clausius-Clapeyron equation.
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Fig. S11 (a) In-situ IR data of 1-en. The cell was heated at 130 °C and then cooled down to 40 °C under N, flowing. A stream

of 15% CO, balanced with N, was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of
the IR spectra in the high frequency range.
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Fig. S12 (a) In-situ IR data of 1-en. The cell was heated at 130 °C and then cooled down to 40 °C under N, flowing. Humid 15%

CO, was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the high
frequency range.
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Fig. S13 (a) In-situ IR data of 1-en. CO, (15%) was flowed into the cell for 10 min and then N, was infused into it for different
times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency range.
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Fig. S14 (a) In-situ IR data of 1-en. Humid CO, (15%) was flowed into the cell for 10 min and then N, was infused into it for
different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency
range.
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Fig. S15 (a) In-situ IR data of 1-mmen. The cell was heated at 130 °C and then cooled down to 40 °C under N, flowing. A
stream of 15% CO, balanced with N, was infused into the cell and in-situ IR data were collected at different times. (b)
Enlargement of the IR spectra in the high frequency range.
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Fig. S16 (a) In-situ IR data of 1-mmen. The cell was heated at 130 °C and then cooled down to 40 °C under N, flowing.

Humid 15% CO, was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR
spectra in the high frequency range.
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Fig. S17 (a) In-situ IR data of 1-mmen. CO, (15%) was flowed into the cell for 10 min and then N, was infused into it for

different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency
range.
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Fig. S18 (a) In-situ IR data of 1-mmen. Humid CO, (15%) was flowed into the cell for 10 min and then N, was infused into it

for different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high
frequency range.
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Fig. S19 (a) In-situ IR data of 1-ppz. The cell was heated at 130 °C and then cooled down to 40 °C under N, flowing. A stream
of 15% CO, balanced with N, was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of
the IR spectra in the high frequency range.
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Fig. S20 (a) In-situ IR data of 1-ppz. The cell was heated at 130 °C and then cooled down to 40 °C under N, flowing. Humid

15% CO, was infused into the cell and in-situ IR data were collected at different times. (b) Enlargement of the IR spectra in the
high frequency range.
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Fig. S21 (a) In-situ IR data of 1-ppz. CO, (15%) was flowed into the cell for 10 min and then N, was infused into it for

different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency
range.
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Fig. S22 (a) In-situ IR data of 1-ppz. Humid CO, (15%) was flowed into the cell for 10 min and then N, was infused into it for

different times. The temperature was increased from 40 °C to 130 °C. (b) Enlargement of the IR spectra in the high frequency
range.
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Table S6. Selectivity calculated from difference in breakthrough times of CO, and N,.

N, breakthrough time (min/g) 3.2
CO, breakthrough time (min/g) 22
Breakthrough CO,/N; selectivity 6.9

3.2
32
10




