Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Controllable Synthesis of Bi₄O₅Br₂ Ultrathin Nanosheets for

Photocatalytic Removal of Ciprofloxacin and Mechanism Insight

Jun Di, Jiexiang Xia*, Mengxia Ji, Sheng Yin, Hongping Li, Hui Xu, Qi Zhang, Huaming Li* School of Chemistry and Chemical Engineering, Institute of Energy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China

*Corresponding author: Tel.:+86-511-88791108; Fax: +86-511-88791108; E-mail address: xjx@ujs.edu.cn; lhm@ujs.edu.cn

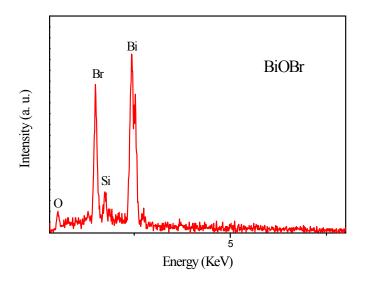


Figure S1. EDS analysis of the as-prepared BiOBr materials.

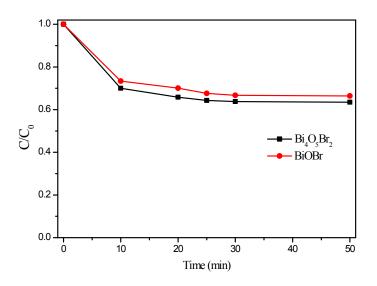


Figure S2 Time profiles of adsorption of CIP over $Bi_4O_5Br_2$ and BiOBr materials.

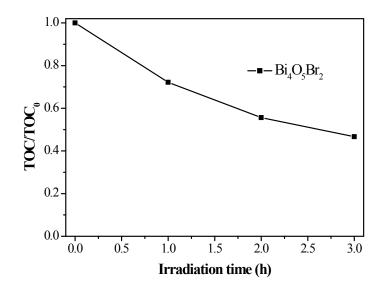


Figure S3 The decrease of TOC during photocatalytic degradation of CIP on ${\rm Bi}_4{\rm O}_5{\rm Br}_2$ ultrathin nanosheets under visible light irradiation.

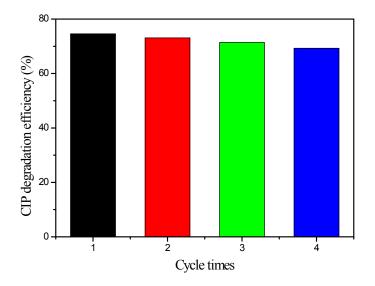


Figure S4 Cycling runs for the photodegradation of CIP in the presence of $Bi_4O_5Br_2$ ultrathin nanosheets under visible light irradiation.

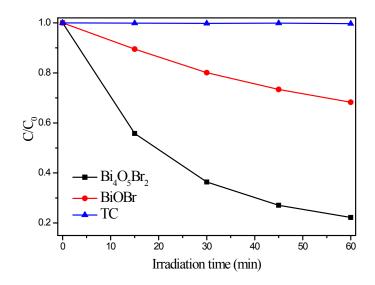


Figure S5 Photocatalytic degradation of TC in the presence of $Bi_4O_5Br_2$ ultrathin nanosheets and BiOBr materials under visible light irradiation.

 Table S1 Pseudo-first-order rate constant for CIP photocatalytic oxidation under

 different photocatalysts

Series	Photocatalyst	The first order kinetic equation	k (min ⁻¹)	<i>R</i> ²
1	BiOBr	$-\ln(C/C_0) = 0.0059t$	0.0059	0.9998
2	Bi ₄ O ₅ Br ₂	$-\ln(C/C_0) = 0.0113t$	0.0113	0.9993