Electronic Supplementary Information for:

Design and Synthesis of Ni-MOF/CNTs composites and rGO/Carbon Nitride composites for An Asymmetric Supercapacitor with High Energy and Power Density

Ping Wen^a, Peiwei Gong^b, Jinfeng Sun^b, Jinqing Wang^{a*} and Shengrong Yang^a

^a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.

^b University of Chinese Academy of Sciences, Beijing 100080, P. R. China.

* Corresponding author, jqwang@licp.cas.cn;

Fax: +86 931 8277088

Tel.: +86 931 4968076

Figure S1. SEM image of Ni-MOF/CNTs-5

Figure S2. TEM image of mildly oxidized CNTs.

Figure S3. HRTEM image of mildly oxidized CNTs.

Figure S4. TEM image of Ni-MOF.

Figure S5. HRTEM image of Ni-MOF.

Figure S6. Nitrogen adsorption-desorption isotherm of Ni-MOF/CNTs-5 at 77.3 K.

Figure S7. The pore-size distribution of Ni-MOF/CNTs-5.

Figure S8. Nyquist plots of Ni-MOF and Ni-MOF/CNTs-5 composite.

Figure S9. The relationship of current density *vs* the square root of scan rates in pure Ni-MOF.

Figure S10. TEM image of GO sheets.

Figure S11. TEM image of g-C₃N₄ sheets.

Table S1. Comparison of capacity retention of asymmetric supercapacitors fabricated in our work with others reported.

Asymmetric Supercapacitors	Cycling	Current Density	Capacity	Reference
	Number	or Scan Rate	Retention	
Ni ₃ S ₂ /MWCNT-NC//AC	5000	4 A g ⁻¹	90%	[1]
Co ₃ O ₄ @Ni(OH) ₂ //RGO	1000	25 mA cm ⁻²	86%	[2]
Co ₉ S ₈ //Co ₃ O ₄ @RuO ₂	2000	2.5 mA cm ⁻²	90.2%	[3]
RuO ₂ /graphene//graphene	2000	1.0 A g ⁻¹	95%	[4]
Ni ₃ S ₂ /MWCNT-NC//AC	5000	4.0 A g ⁻¹	90%	[5]
Graphite/Ni/Co ₂ NiO ₄	5000	10 mA cm ⁻²	96.4%	[6]
//graphite/Ni/AC				
Ni-Co LDH//rGO	5000	5 A g ⁻¹	82%	[7]
CoO@C//AC	10000	50 mA cm ⁻²	96.9%	[8]
Ni(OH) ₂ /graphene//porous	3000	100 mV s ⁻¹	94%	[9]
graphene				
Ni(OH) ₂ //activated carbon	1000	5 mV s ⁻¹	82%	[10]
LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ //AC	1000	100 mA g ⁻¹	80%	[11]
Graphene/MnO ₂ //activated carbon	1000	200 mV s ⁻¹	97%	[12]
nanofiber				
Ni-MOF/CNTs//rGO/C3N4	5000	2 A g ⁻¹	95%	Our Work

References:

- [1] C. S. Dai, P. Y. Chien, J. Y. Lin, S. W. Chou, W. K. Wu, P. H. Li, K. Y. Wu and
- T. W. Lin, ACS Appl. Mater. Interfaces, 2013, 5, 12168.
- [2] C. H. Tang, X. S. Yin and H. Gong, ACS Appl. Mater. Interfaces, 2013, 5, 10574.
- [3] J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen and G. Shen, ACS Nano, 2013, 7, 5453.
- [4] B. G. Choi, S. J. Chang, H. W. Kang, C. P. Park, H. J. Kim, W. H. Hong, S. Lee and Y. S. Huh, *Nanoscale*, 2012, **4**, 4983.
- [5] C. Dai, P. Chien, J. Lin, S. Chou, W. Wu, P. Li, K. Wu and T. Lin, ACS Appl.

Mater. Interfaces, 2013, 5, 12168.

- [6] J. X. Feng, S. H. Ye, A. L. Wang, X. F. Lu, Y. X. Tong and G. R. Li, Adv. Funct. Mater., 2014, 24, 7093.
- [7] H. Chen, L. F. Hu, M. Chen, Y. Yan and L. M. Wu, *Adv. Funct. Mater.*, 2014, 24, 934.
- [8] H. Wang, C. Qing, J. L. Guo, A. A. Aref, D. M. Sun, B. X. Wang and Y. W. Tang, J. Mater. Chem. A, 2014, 2, 11776.
- [9] J. Yan, Z. J. Fan, W. Sun, G. Q. Ning, T. Wei, Q. Zhang, R. F. Zhang, L. J. Zhi and F. Wei, *Adv. Funct. Mater.*, 2012, **22**, 2632.
- [10] J. W. Lang, L. B. Kong, M. Liu, Y. C. Luo and L. Kang, *J. Solid State Electron.*, 2010, 14, 1533.
- [11] Y. Zhao, Y. Y. Wang, Q. Y. Lai, L. M. Chen, Y. J. Hao and X. Y. Ji, Synth. Met., 2009, 159, 331.
- [12] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, *Adv. Funct. Mater.*, 2011, 21, 2366.