Supplementary Information

Safer Salts for CdTe Nanocrystal Solution Processed Solar Cells: *The Dual Roles of Ligand Exchange and Grain Growth*

Troy K. Townsend, at William B. Heuer, b Edward E. Foos, c Eric Kowalski, d Woojun Yoone and Joseph G. Tischlere

^a. St. Mary's College of Maryland, Department of Chemistry and Biochemistry, St. Mary's City, MD 20686

- ^c NSWC Indian Head EOD Technology Division, Indian Head, MD 20640
- ^d ASEE NREIP Intern at the U.S. Naval Research Laboratory, Washington, DC
- e. Naval Research Laboratory, Washington, DC 20375
- † Corresponding Author: <u>tktownsend@smcm.edu</u>

Figure S1. Fig. 5 X-ray photoelectron spectra (XPS) of solution processed CdTe nanocrystal working device film treated with CdCl₂ in methanol and annealed at 380° C for 25s per layer for 7 layers @ 60 nm each detecting the surface (blue) and sub-surface (red) presence of cadmium [A], tellurium [B], oxygen [C], chlorine [D] and carbon [E].

Table S1. Relative atomic compositions of surface and sub-surface annealed CdTe nanocrystal films

from Figure ST XPS data.		
Element	Surface	Bulk
Cd	12.99	32.76
Те	8.27	29.67
О	28.42	16.9
С	50.31	20.66

b. U.S. Naval Academy, Department of Chemistry, Annapolis, MD 21402