Supporting Information

Tailored Synthesis of SrTiO₃/TiO₂ Heterostructures for Dye-Sensitized Solar

Cells with Enhanced Photoelectric Conversion Performance

Enyan Guo, Longwei Yin*

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China

*To whom correspondence should be addressed. Tel.: + 86 531 88396970. Fax: + 86 531 88396970. E-mail: yinlw@sdu.edu.cn

Figure S1 XRD patterns of the SrTiO₃/TiO₂ samples: (a) ST0 and (b) ST4.

Atomic Percent Elements Samples	Sr (%)	Ti (%)	Actual Percent	Theoretical Percent
ST0	6.06	40.43	15	25
ST1	8.92	20.92	43	50
ST2	13.05	17.40	75	75
ST3	14.19	16.45	86	100
ST4	15.34	15.37	98	150

Table S1 Actual percent data of Sr/Ti from EDS spectra

Figure S2 EDX spectra of TiO₂ and SrTiO₃/TiO₂ samples.

Figure S3 (a) UV-vis diffuse reflectance spectra (DRS) of TiO_2 and $SrTiO_3/TiO_2$ samples. (b) The plots of transformed Kubelka-Munk function versus the energy of light.

The reflectance ability of the TiO₂ nanosheets (T1) was much greater than that of the SrTiO₃/TiO₂ samples (STseries) over the whole wavelength range (Fig. S3a). The reflectance first decreased and then increased with increasing the molar ratio of Sr/Ti, the samples ST1, ST2 and ST3 have the lowest reflectance, in other words, the ability of absorb the solar light is the highest. This ability makes it for promising application in photovoltaic devices. The band gap energy of the TiO₂ and SrTiO₃/TiO₂ samples can be roughly determined according to the plots in Fig. S3b, which are obtained via the transformation based on the Kubelka-Munk function $(F(R\infty)=(1-R)^2/(2R))$, where R is the reflection coefficient).¹ The TiO₂ sample (T1) exhibits a smooth absorption edge around 390 nm, corresponding to band gap energy of 3.2 eV. The estimated band gap value of the SrTiO₃/TiO₂ samples (ST-series) is approximately to 3.25 eV.

References

1. Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Muller, M. M.; Kleebe, H. J.; Ziegler, J.;

Jaegermann, W. Inorg. Chem. 2012, 51, 7764-7773.