Supporting Information

Mechanically bendable superhydrophobic steel surface with its selfcleaning and corrosion-resistant properties

Sanjay S. Latthe ^a, P. Sudhagar ^a, Anitha Devadoss ^a, A. Madhan Kumar^b, Shanhu Liu ^c, Chiaki Terashima^a, Kazuya Nakata^a, and Akira Fujishima^{*a}

S1. Surface microstructure analysis

Figure S1. FE-SEM images of (a) bare 430-SS, (b) E-430-SS/1h, (b) E-430-SS/4h, and (b) E-430-SS/6h.

S2. Elemental analysis

Figure S2. EDX spectra of (a) bare 430-SS (b) M-430-SS/8h.

S3. FE-SEM images of the superhydrophobic M-430-SS/8h surface after sandpaper abrasion test

Figure S3. FE-SEM images captured from different position of the superhydrophobic M-430-SS/8h surface after sandpaper abrasion test.

Figure S4. Laser microscope images captured from different position of the superhydrophobic M-430-SS/8h surface after sandpaper abrasion test and their respective surface roughness values.

<u>S5. FE-SEM and laser microscope images of the superhydrophobic M-430-SS/8hr surface</u> after adhesive tape peeling test

Figure S5. FE-SEM and laser microscope images of the superhydrophobic M-430-SS/8h surface after adhesive tape peeling test.

S6. Wetting stability of the superhydrophobic M-430-SS/8h surface against UV irradiation

Figure S6. Wetting stability of the superhydrophobic M-430-SS/8h surface against UV irradiation.