Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled

with nanoporous graphene co-doped by S and Se

S.S. Shinde, Abdul Sami, Jung-Ho Lee*

Department of Materials and Chemical Engineering,

Hanyang University, Ansan, Kyunggido, 426-791, Korea

E-mail: jungho@hanyang.ac.kr, Phone: +82-31-400-5278, Fax: +82-31-419-7203

Results and discussion

Figure S1 Size distribution of graphene quantum dots detached from graphene matrix

Figure S2 Nitrogen adsorption isotherms and BET surface areas of (a) pure graphene and (b) nanoporous graphene; the inset shows a corresponding pore size distribution curve.

Figure S3 Raman spectra of pure and porous graphene (a) and hybrid catalysts (b) and their I_D/I_G ratios.

Figure S4 High-resolution XPS spectra of (a) carbon in pristine graphene and (b) sulfur and (c) selenium in doped hybrid.

Normalization process

To normalize the activity in relation to the surface area and catalyst load (mass) for newly developed metal-free catalysts, we calculated the electrochemical active surface areas by measuring their electrochemical double-layer capacitances (C_{dl}) using a simple CV method. A potential range of 0.025-0.325 V vs. RHE was selected for the capacitance measurements because no electrochemical features corresponding to Faradic current were observed in this region. Then, the capacitive currents, i.e., $\Delta J_{IJa-Jcl}$ @0.2 V, were plotted as a function of the CV scan rate, as shown in Figs. S5 a,b; linear relationships were observed with slopes that were two times larger than the C_{dl} value. Accordingly, the calculated C_{dl} values of metal-free catalyst are shown in Table S3. Considering the catalyst load and electrochemical active surface area, the normalization of exchange current density is reported in Tables S3&4 in comparison with welldeveloped nanostructured MoS₂-based metallic catalysts.

Figure S5 (a) CV curves and (b) the corresponding difference in current density at 0.2 V plotted against scan rate of typical g-C₃N₄@S-Se-pGr catalyst; the calculated C_{dl} values for different catalysts are shown in Table S3.

Catalyst	On-set potential (V, versus RHE)	η @ 10 mA cm ⁻² (V, versus RHE)	Tafel value (mV/dec)	Reference
C ₃ N ₄ @NG	-	-0.240	51.1	1
C ₃ N ₄ /NG	-	-0.380	67	1
N-G	0.331	-0.490	116	2
P-G	0.374	-0.553	133	2
N,P-G	0.289	-0.420	91	2
g-C ₃ N ₄ nanoribbon-G	0.080	-0.207	54	3
Graphene (500 °C)	0.50	-0.661	237	4
S-G (500 °C)	0.25	-0.391	130	4
N,S-G	0.130	-0.276	81	4
Activated carbon nanotubes	0.100	-	71.3	5
Nitrogen-doped Activated Carbon	-	-0.625	-	6
Monolayer MoS ₂ /NPG	0.120	-0.226	46	7
MoS ₂ /RGO	-	-0.140	41	8
S-pGr	0.382	-0.671	124	This work
Se-pGr	0.417	-0.707	123	This work
S-Se-pGr	0.332	-0.634	105	This work
g-C ₃ N ₄ @S-pGr	0.132	-0.346	84	This work
g-C ₃ N ₄ @Se-pGr	0.162	-0.398	93	This work
g-C ₃ N ₄ @S-Se-pGr	0.092	-0.300	86	This work

Table S1 Electrochemical analysis of different catalysts (compared with reported literature) based on the polarization curves and Tafel plots (in 0.5 M H_2SO_4). The on-set potential in this study is defined as the overpotential at which the reduction current density is 0.5 mA/cm².

Table S2 Electrochemical analysis of different catalysts based on the polarization curves and Tafel plots (in 0.1 M KOH). The on-set potential in this study is defined as the overpotential at which the reduction current density is 0.5 mA/cm².

Catalyst	On-set potential	η @ 5 mA cm ⁻²	Tafel value	I₀ (A cm⁻²),
	(V, versus RHE)	(V, versus RHE)	(mV/dec)	×10 ⁻⁷
S-pGr	0.340	-1.24	212	2.25
Se-pGr	0.180	-1.31	203	1.44
S-Se-pGr	0.665	-1.19	210	1.82
g-C ₃ N ₄ @S-pGr	0.420	-0.88	170	4.83
g-C ₃ N ₄ @Se-pGr	0.380	-0.97	174	2.87
g-C ₃ N ₄ @S-Se-pGr	0.320	-0.86	169	5.58

Catalyst	Catalyst loading (μg/cm²)	I₀ (A cm ⁻²), ×10 ⁻⁶	C _{dl} (mF cm ⁻²)	Reference
C ₃ N ₄ @NG hybrid	100	0.35	5	1
N,P-G	200	0.24	10.6	2
$g-C_3N_4$ nanoribbon-G	143	23700	13	3
N,S-G	-	8.4	-	4
MoS ₂ /RGO	285	5.10	2.40	9
MoO ₃ -MoS ₂	60	8.20	2.20	9
Amorphous MoS _x	9	0.15	1.10	9
MoS ₂ /graphene	210	3.00	10.4	10
Amorphous MoS ₂	~31	0.89	2.30	11
MoS ₂ nanosheet	285	12.6	33.7	12
S-pGr	20	0.90	13.3	This work
Se-pGr	20	2.34	14.1	This work
S-Se-pGr	20	2.29	3.89	This work
g-C ₃ N ₄ @S-pGr	20	5.59	5.75	This work
g-C ₃ N ₄ @Se-pGr	20	2.61	6.73	This work
g-C ₃ N ₄ @S-Se-pGr	20	6.27	4.35	This work

Table S3 Comparison of catalyst loading, exchange current density, and electrochemical activesurface area for the currently reported HER catalysts.

Catalyst	I ₀ (A cm ⁻²)	I₀ (A cm ⁻²)	I_0 normalized	Reference
	normalized by	normalized by	by mass and	
	mass, ×10 ⁻⁶	area, ×10 ⁻⁶	area	
C ₃ N ₄ @NG hybrid	0.35	0.35	0.35E-6	1
N,P-G	0.12	0.12	0.24E-6	2
$g-C_3N_4$ nanoribbon-G	16753	16753	16.7E-3	3
MoS ₂ /RGO	1.79	2.40	8.42E-7	9
MoO ₃ -MoS ₂	13.7	3.54	5.89E-6	9
Amorphous MoS _x	1.70	3.23	3.59E-7	9
MoS ₂ /graphene	1.43	1.44	3.00E-6	10
Amorphous MoS ₂	2.87	1.93	0.60E-6	11
MoS_2 nanosheet	4.42	1.90	5.30E-6	12
S-pGr	4.48	0.85	4.23E-6	This work
Se-pGr	11.7	2.34	1.17E-5	This work
S-Se-pGr	11.5	0.63	3.16E-6	This work
g-C ₃ N ₄ @S-pGr	28.0	2.28	1.14E-5	This work
g-C ₃ N ₄ @Se-pGr	13.1	1.25	6.24E-6	This work
g-C ₃ N ₄ @S-Se-pGr	31.4	1.94	9.68E-6	This work

Table S4 Exchange current densities normalized in relation to the catalyst load (mass), active surface area and mass, and area for various catalysts.

Considering the influence of catalyst loading (minimum quantity compared to reported literature) and electrochemical active surface area of the hybrid catalyst, the activity of the prepared hybrids is "comparable" to those of the well-developed metallic (i.e., MoS₂, MoO₃, MoS_x) and metal-free (N, P, S doped, N/P, N/S dual doped graphene, C₃N₄@NG hybrid, activated carbon nanotubes) catalysts.

References

1 Y. Zheng, Y. Jiao, Y. Zhu, L. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Zhang Qiao, *Nat. Commun.*, 2014, **5**, 3783.

2 Y. Zheng, Y. Jiao, L. Li, T. Xing, Y. Chen, M. Jaroniec, S. Zhang Qiao, ACS Nano, 2014, 8, 5290

3 Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, L. Qu, Angew. Chem. Int. Ed., 2014, 53, 13934.

4 Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed., 2015, 54, 2131.

5 W. Cui, Q. Liu, N. Cheng, A. Asiricd, X. Sun, Chem. Commun., 2014, 50, 9340.

6 B. Zhang, Z. Wen, S.Ci, J. Chen, Z. He, RSC Adv., 2014, 4, 49161.

7 Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito, J. Han, X. Guo, Z. Tang, T. Fujita, A. Hirata, M. Chen, 2014, **26**, 8023.

8 X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Chem. Mater., 2014, 26, 2344.

9 J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater., 2012, 11, 963.

10 L. Liao, J. Zhu, X. Bian, L. Zhu, M. Scanlon, H. Girault, B. Liu, Adv. Funct. Mater., 2013, 23, 5326

11 D. Merki, H. Vrubel, L. Rovelli, S. Fierroa, X. Hu, Chem. Sci., 2012, 3, 2515

12 J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, *J. Am. Chem. Soc.*, 2013, **135**, 17881