Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

**Electronic Supporting Information (ESI)** 

## Investigation of hollow nitrogen-doped carbon spheres as non-precious

## Fe-N<sub>4</sub> based oxygen reduction catalyst

Jakkid Sanetuntikul<sup>a</sup>, Chitiphon Chuaicham<sup>b</sup>, Young-Woo Choi<sup>c</sup> and Sangaraju Shanmugam<sup>a</sup>\*

<sup>a,\*</sup> Department of Energy Systems Engineering,

Daegu Gyeongbuk Institute of Science & Technology, Dalseong-gun, Daegu 711-873,

Korea.

<sup>b</sup> Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400,

Thailand

<sup>c</sup> Korea Institute of Energy Research (KIER), New and Renewable Energy village, 1110-6, Baek-ryunri, Haseomyun, Bu-angun, Jeonlabukdo, Republic of Korea.

\*E-mail: sangarajus@dgist.ac.kr



**Figure S1.** STEM image and EELS spectrum (red square indicated in STEM images) of (a, a') HNCS61, (b, b') HNCS81, (c, c') HNCS91, respectively.



**Figure S2.** Arrays showing the bright field STEM image, individual of element the Fe-K edge, N-K edge and C-K edge image of catalyst Vs. HNCS61, HNCS71, HNCS81, and HNCS91.



Figure S3. XPS survey spectra of HNCS catalyst.



**Figure S4.** ORR polarization curve of HNCS71 with different loading in In  $O_2$ - saturated 0.1M KOH, 1600 rpm.



Figure S5. ORR polarization curve and K-L plot of (a, a') HNCS61, (b, b') HNCS81, (c, c') HNCS91, respectively. In  $O_2$ - saturated 0.1M KOH.



Figure S6. Fe K-edge XANES spectra of HNCS electrocatalyst with standard Fe foil, FeO and  $Fe_2O_3$ 

The normalized Fe K-edge XANES spectra of HNCS61, HNCS71, HNCS81 and HNCS91 catalysts including those of the Fe foil, FeO and Fe<sub>2</sub>O<sub>3</sub> standards of which oxidation state is about +0, +2 and +3, respectively. From the figure, each standard spectrum has the maximum gradient at 67112.09, 7117.04 and 7121.89 eV, respectively. In this case, the absorption Fe K-edge XANES spectra of HNCS71 samples show the maximum gradient at 7116.92 eV which is close to that of FeO and the Fe oxidation state is suggested to be +2 indicating the existence of more Fe<sup>+2</sup> ion than Fe metal.



Figure S7. Fe K-edge of  $k^2$ -weighted Fourier transforms EXAFS spectra of standard Fe foil.

| Catalyst | no of electron | Nitrogen distribution (%) |      |      |            | Total N content    | N/C   |
|----------|----------------|---------------------------|------|------|------------|--------------------|-------|
| Catalyst | transfer       | N1                        | N2   | N3   | N4<br>0.31 | (%) <sup>(a)</sup> | ratio |
| HNCS61   | 2.41           | 4.85                      | 2.02 | 5.66 |            | 12.55              | 0.16  |
| HNCS71   | 3.90           | 4.15                      | 1.41 | 4.93 | 0.31       | 10.81              | 0.13  |
| HNCS81   | 3.59           | 2.39                      | 0.85 | 3.41 | 0.26       | 6.91               | 0.08  |
| HNCS91   | 2.96           | 1.09                      | 0.42 | 2.31 | 0.21       | 4.04               | 0.04  |
| Pt/C     | 3.95           | -                         | -    | -    | -          | -                  | -     |

 Table S1.
 The physical and electrochemical properties of HNCSs

(a) Measured by X-ray photoelectron spectroscopy (XPS)

| Table S2. | The CHN | elemental | analysis | of HNCSs |
|-----------|---------|-----------|----------|----------|
|-----------|---------|-----------|----------|----------|

| Catalyst | с     | н   | N     | N/C ratio |
|----------|-------|-----|-------|-----------|
| HNCS 61  | 78.9  | 2.1 | 13.19 | 0.167     |
| HNCS 71  | 83.38 | 0.7 | 11.4  | 0.136     |
| HNCS 81  | 88.2  | 0.7 | 6.79  | 0.076     |
| HNCS 91  | 91.47 | 0.2 | 3.89  | 0.042     |

**Table S3.** The alkaline membrane fuel cells performance data electrocatalyst with commercial membrane in  $H_2$ - $O_2$  system, no added back pressurization, reported in the literature

| Cathode material     | Operating<br>Temperature<br>(°C) | Maximum<br>power density<br>(mW cm <sup>-2</sup> ) | Reference |  |
|----------------------|----------------------------------|----------------------------------------------------|-----------|--|
| HNCS71               | 60                               | 68                                                 | *         |  |
| NpGr-72              | 50                               | 27                                                 | 1         |  |
| N-CNT                | 50                               | 37.3                                               | 2         |  |
| MnO <sub>x</sub> -GC | 70                               | 98                                                 | 3         |  |
| Ag/C                 | RT                               | 10                                                 | 4         |  |
| Ag/C                 | 60                               | 48                                                 | 5         |  |
| Au/C                 | 60                               | 21                                                 | <b>)</b>  |  |
| CoPc/MWCNT           | 50                               | 120                                                | 6         |  |
| FePc/MWCNT           | 50                               | 60                                                 |           |  |

\* This study

References

1.T. Palaniselvam, M. O. Valappil, R. Illathvalappil, and S. Kurungot, *Energy Environ. Sci.*, 2014, 7, 1059–1067.

2.C. V. Rao and Y. Ishikawa, J. Phys. Chem. C, 2012, 116, 4340–4346.

3.J. W. D. Ng, Y. Gorlin, D. Nordlund, and T. F. Jaramillo, *J. Electrochem. Soc.*, 2014, 161, D3105–D3112.

4.S. Maheswari, P. Sridhar, and S. Pitchumani, *Electrocatalysis*, 2011, 3, 13–21.

5.J. R. Varcoe, R. C. T. Slade, G. L. Wright, and Y. Chen, J. Phys. Chem. B, 2006, 2, 21041–21049.

6.I. Kruusenberg, L. Matisen, Q. Shah, A. M. Kannan, and K. Tammeveski, *Int. J. Hydrogen Energy*, 2012, 37, 4406–4412.