1	Supporting Information
2	
3	
4	Title: Self-Lubricating Organogels (SLUGs) with Exceptional Syneresis-induced Anti-
5	sticking Properties Against Viscous Emulsions and Ices
6	
7	Chihiro Urata, Gary J. Dunderdale, Matt W. England, and Atsushi Hozumi*
8	
9	
10	

1 Experimental

2 Materials

3 Sylgard[®] 184 silicone elastomer kit was purchased from Dow Corning Toray Co. Ltd. 4 Toluene, *n*-hexane, *n*-octane, 2,2,4,4,6,8,8-heptamethylnonane (isocetane), *n*-docecane, *n*-5 tetradecane, and *n*-hexadecane, were purchased from Wako Pure Chemical Industries Ltd. *n*-6 Octadecyltrichlorosilane was purchased from Tokyo Chemical Industry Co, Ltd. 7 Polydimethylsiloxane (silicone oil), polymethylphenylsiloxane (AR20), polymethylphenylsiloxane (CR100), Phenylmethylsiloxane-dimethylsiloxane 8 copolymer 9 (AS100), and phenylmethylsiloxane-dimethylsiloxane copolymer (AP100) were purchased 10 from Sigma-Aldrich Co. Polymethylphenylsiloxane (TSF431) and polymethylphenylsiloxane (TSF437) were purchased from Momentive Co. All chemicals were used as received without 11 12 further purification. 13

14

15 **Preparation of PDMS-resin and organogels**

16 PDMS-resin and various types of organogel were prepared by the following procedure (see 17 Table S2 for the composition). First, 1 g of Sylgard 184 Base was mixed with *a* mL of an 18 organic liquid phase1, *b* g of an organic liquid phase2, and 0.1 mL of Sylgard 184 curing 19 agent; the solution was then vigorously mixed to obtain a homogeneous solution. The 17 transparent solution was heated at 100 °C for 3 h in a Teflon[®] container/tray (perfluoroalkoxy 18 copolymer resin, PFA), glass vial, or petridish to promote gelation. For the preparation of 19 large samples, the compositions in the Table S2 were scaled up.

23

24

25 Swelling measurements

Swelling ratio of PDMS-resin for various liquids were obtained by comparing the 26 27 original volume and estimated swollen volume, after being immersed in a solvent. We chose 28 *n*-hexane as an extraction solvent because it shows high affinity for PDMS precursors and the 29 resulting matrices, as well as has high volatility. First, pieces of PDMS-resin prepared from 30 Sylgard 184 kit (about 10 mm \times 6 mm \times 1.5 mm), were washed by Soxhlet extractor for 48 31 hours using *n*-hexane to remove unreacted silicones from the PDMS-resin. The pieces were 32 then dried in an oven for 48 hours at 100 °C to remove the *n*-hexane completely. Each piece 33 was then immersed in 3 mL of organic liquid(s) and shaken at 100 rpm for 4 days. After the 34 swelling procedure, the pieces were wiped to remove any residual liquid and weighed. This 35 weight was then converted to a volume by multiplying with the density of the each swelling liquid. The swelling ratio was calculated using the following formula. Measurements were 36 37 performed at least 3 times for each sample.

38

39 Swelling ratio (S, %) = $(V/V_0) \times 100$

40 V_0 : initial volume of PDMS-resin

- 41 V: V_0 + uptaken volume of organic liquid
- 42

43 Syneresis behavior measurements

44 Syneresis behavior of organogels was investigated by monitoring their mass over time. 45 Before weighing, gels were wiped dry of liquid using adsorbent tissue paper. The weight loss

46 of the organogels was calculated as following formula. Measurements were performed at least

47 3 times for each sample.

48

49 Weight loss (%) = $((100-W_t)/W_0) \times 100$

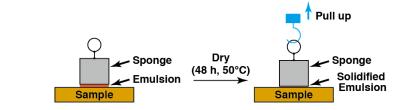
- 50 W_t = Weight of the organogels after the wipe dry
- 51 W_0 = Initial weight of the organogel

1 Observation of droplet shape on the syneresis organogels surface

Static contact angles and shapes of water droplets were observed using a CA goniometer (Kyowa Interface Science, model CA-V150). A 5μ L water drop was dispensed onto the organogels, and observed at various times. All measurements were performed at least 5 times for each sample.

6

7 Measurement of water droplet velocity on inclined surfaces


8 Water droplet and various emulsions (50 μ L) were set on a sheet of organogel (100 mm \times

9 100 mm) inclined at 30°. The average velocity was estimated using the total time to cross 100
10 mm of the sheet. Measurements were performed at least 5 times for each sample.

11

12 Adhesion force measurement of solidified emulsions

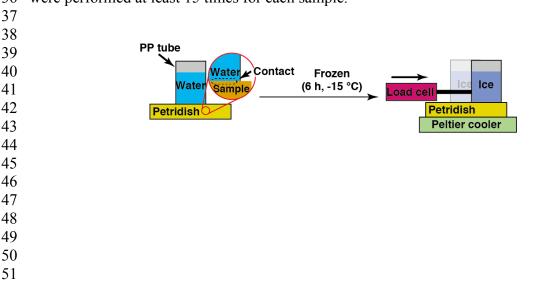
Several emulsions were interposed between samples and a sponge equipped with a hook ($30 \text{ mm} \times 30 \text{ mm}$) then the dried for 48 hours at 50 °C. After the emulsion had solidified, the hook was pulled up using a texture analyzer (CT3-4500, Brook field) in order to obtain the adhesion strength. Measurements were performed at least 5 times for each sample.

17

18 19

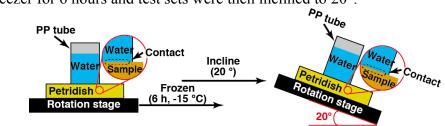
20

21

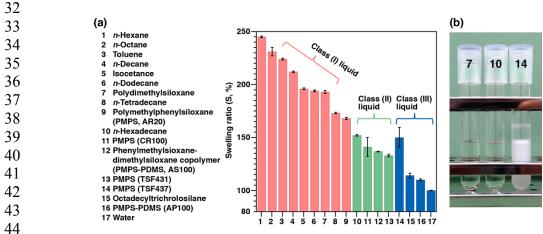

24 Thermo-responsive syneresis behavior of the organogels

Organogels coated on petridishes (φ : 90 mm) were cooled to -15 °C for 6 hours. After the incubation, the petridishes were warmed back to room temperature (r.t.). Measurements were performed at least 5 times for each sample.

28


29 Ice adhesion test

Ice adhesion test was performed by a simple and conventional method demonstrated by many researchers (references #4 l)-n) and #10). Water (15 mL) was added to a polypropylene tube (φ : 24 mm, h: 55 mm) on the samples coated on the petridish and water was frozen at -15 °C in the freezer for 6 hours. The test sets were transferred to the home-made ice adhesion strength-tester, which was equipped with a peltier cooling stage. The ice adhesion strength was measured by pushing the ice pillar with a stainless pole with a load cell. Measurements were performed at least 15 times for each sample.


1 Ice sliding test

2 Water (50 mL) was added into a polypropylene tube (φ : 32 mm, h: 80 mm) on the 3 organogel-coated petridishes set on a rotating stage. Water was frozen by cooling it to -15 °C 4 in the freezer for 6 hours and test sets were then inclined to 20°.

Table S1. Physico-chemical properties of the organic liquids used in this study.

Liquid name	MW (g∕mol)	Viscosity (mPa•s)	Density (g/cm³)	Boiling point (°C)	Melting point (°C)	Surface tension (dyn/cm)	Miscibility for PDMS precursor	Swelling ratio (<i>S</i> , %)	Standard deviation (-)	Class
<i>n</i> -Hexane	86.17	0.32	0.66	69	-95	18.5		2.45	0.0072	
<i>n</i> -Octane	114.23	0.508	0.702	126	-57	21.82		2.31	0.0404	
Toluene	92.14	0.55	0.866	111	-95	28.4		2.24	0.0086	
<i>n</i> -Decane	142.28	0.86	0.731	174	-30	23.6		2.12	0.0057	
Isocetane	226.44	3.299	0.784	247	102	24.32		1.96	0.0079	I
<i>n–</i> Dodecane	170.33	1.3791	0.746	216	-12	23.35		1.94	0.0080	
Polydimethylsiloxane (silicone oil)	770	5	0.913	N/D	-55	19.7	YES	1.93	0.0135	
<i>n</i> -Tetradecane	198.39	2.0883	0.763	253	6	26.56		1.73	0.0075	
Polymethylphenylsiloxane (AR 20)	350-450	20	1.01	N/D	N/D	N/D		1.68	0.0099	
<i>n</i> -Hexadecane	226.44	3.08	0.775	N/D	16-19	27.4		1.52	0.0072	
Polymethylphenylsiloxane (CR 100)	N/D	100	1.07	> 250	< -60	N/D		1.41	0.0892	
Phenylmethylsiloxane-dimethylsiloxane copolymer (AS 100)	N/D	100	0.995	N/D	< - 60	N/D		1.37	0.0032	II
Polymethylphenylsiloxane (TSF 431)	N/D	100	0.99	> 250	< -70	21.3		1.33	0.0126	
Polymethylphenylsiloxane (TSF 437)	N/D	22	1.02	N/D	N/D	N/D		1.50	0.0948	
Octadecyltrichororosilane	247.67	N/D	1.07	229	23	N/D		1.14	0.0235	
Phenylmethylsiloxane-dimethylsiloxane copolymer (AP 100)	2000-2100	100	1.06	>350	< -30	24.5	No	1.10	0.0080	III
Water	18.02	0.8	1	N/D	0	72.8		1.00	0.0023	

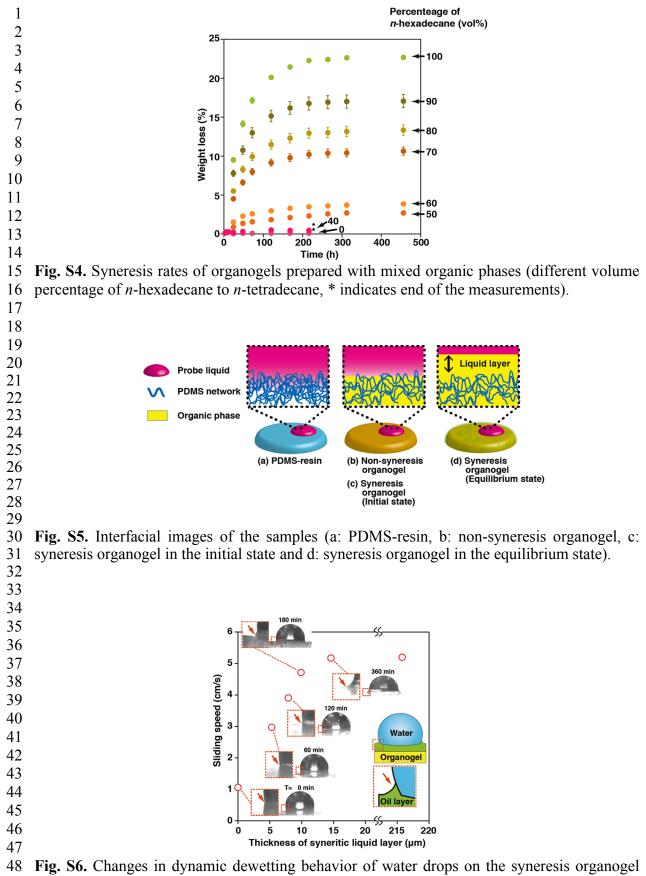
46 Fig. S1. Compatibility of PDMS-resin toward various organic liquids phases. (a) Swelling
47 ratio of PDMS-resin toward several types of organic liquids and water. (b) Typical
48 appearance of precursor solutions after mixing PDMS-precursor with polydimethylsiloxane (7,
49 class (I) liquid), *n*-hexadecane (10, class (II) liquid), and TSF437 (14, class (III) liquid).

	Sylgard		Liquid 1		Liqu	id 2	Volume percentage of organic liquid	
	Base (g)	Curing agent (mL)	Type of liquid	a, mL	Type of liquid	b, mL	α,%	
	1	0.1	1-13	0.5–30	-	-	50, 100, 150, 300, 600, 1200, and 3000	
	1	0.1	8	0.3-2.7	10	0.3-2.7	300	
	1	01	5	2.25	15	0.75	300	
2	1	0.1	9	0.3-2.7	14	0.3-2.7	300	
2 3								
4								
5								
6								
7								
8								
9					120			
10								
				1117	6			
11						S.		
12			•			19		
13					× // ×	69,		
14				1 Sec	\times	0		
15					$(X \times)$			
16					$X X _{2}$			
17					A Contraction of the second se			
18						\langle		
19					here			
20								
	E:- 02 7	F ; 1		1- (-				
21	Fig. S2.	i ypical appea	rance of org	ganogeis (o	organic liqu	a: n-aecal	ne, α : a=50, b=100, c=150,	
22			g=3000).	The sample	s were tilte	d at 45 t	o emphasis on the sol state	
23	of g=300	0.						
24								
25								
26								
		(a)		(b)		(c)		

1 Table S2. Compositions of the precursor solution applied in this study.

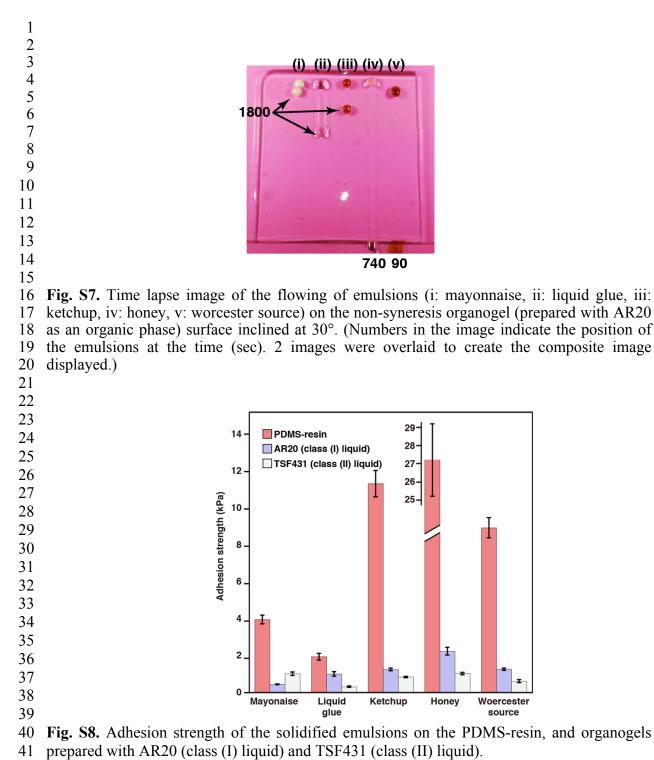
27 28 Fig. S3. SEM images of (a,d) PDMS-resin, (b,e) non-syneresis organogel (AR20, α =300%), and (c,f) syneresis organogels (TSF431, α =300%). Scale bar in the upper images are 30 μ m 29

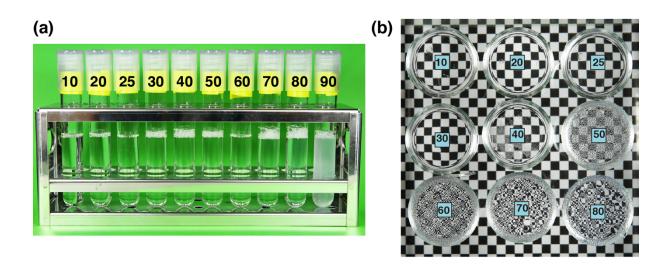
(f)


and lower images are 5 µm The organic phase in the sample (b,e) and (c,f) were extracted 30 31 with *n*-hexane before the SEM observation.

(e)

32


(d)


- 33
- 34
- 35

49 (prepared with TSF431 as an organic phase) as a function of thickness of syneresis liquid 50 layer. Inset images: time lapse images of a water droplet on the syneresis organogel (number 51 on each water drop image indicates the elapsed time (min) after syneresis) and schematic

52 image of the "wetting ridge".

4 Fig. S9. (a) Appearance of precursor solution prepared with mixtures of AR20 (class (I)
5 liquid) and TSF437 (class (III) liquid) as organic phases in various proportions. (b) Syneresis
6 behavior of organogels at r.t. (c) Syneresis behavior of organogels after incubation for 6 hours
7 at -15 °C. Number on the vials and organogels indicate the volume percentage of TSF437.

- Movie S1. Time-lapse movie of syneresis behavior of organogels prepared with AR20 (class 1 2 (I) liquid) and TSF431 (class (II) liquid) (Replay speed: ×900).
- Movie S2. Time-lapse movie of differences in slippery properties of emulsions (Replay 3 speed: $\times 10$) on the organogel prepared with TSF431 (class (II) liquid). 4
- 5 Movie S3. Time-lapse movie of differences in slippery properties of emulsions (Replay speed: ×120) on the organogel prepared with AR20 (class (I) liquid). 6
- Movie S4. Time-lapse movie of the formation of superhydrophobic organogels surfaces 7
- 8 prepared with isocetane (class (I) liquid) and *n*-octadecyltrichlorosilane (class (III) liquid) 9 (Replay speed: $\times 370$).
- 10 Movie S5. Behavior of water droplets on the superhydrophobic organogel surface shown in Movie S4 (Replay speed: $\times 1$).
- 11
- 12 Movie S6. Spontaneous motion of an ice pillar formed on an organogel prepared with a
- 13 mixture of AR20 (class (I) liquid) and TSF431 (class (II) liquid) (Replay speed: ×300).

14