Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Controlled synthesis of V₂O₅/MWCNTs core/shell hybrid aerogels through a mixed growth and self–assembly methodology for supercapacitors with high capacitance and ultralong cycle life

Yingjie Wu, Guohua Gao,* Huiyu Yang, Wenchao Bi, Xin Liang, Yuerou Zhang, Guyu Zhang, and Guangming Wu*

Shanghai Key Laboratory of Special Artificial Microstructure, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China E-mail: gao@tongji.edu.cn; wugm@tongji.edu.cn

Fig. S1 Digital photographs of as-prepared aerogels.

Fig. S2 XRD patterns of crystallized V_2O_5 aerogel after thermal treatment at 300 $^\circ C$ for 3h.

Fig. S3 HRTEM image and SAED patterns (inset) of VO_x nanofibers before thermal treatment.

Fig. S4 (a) TG and DSC curves of VO_x aerogel before thermal treatment in air atmosphere, indicating a crystallization point of 330 °C; (b) TG curves of MWCNTs, V_2O_5 aerogel, VMA–15, VMA–30 ,VMA–60 and VMA–120 hybrid aerogels in air.

The content of MWCNTs (C_M) in hybrid aerogels is calculated according to their TG curves by using the formula $W = 0.9491(1 - C_M) + 0.2592C_M$, where W stands for the final weight of hybrid aerogels in TG curves, 0.9491 and 0.2592 is the final weight of pure V₂O₅ aerogel and pure MWCNTs, respectively.

Fig. S5 SEM and TEM images of (a, e) MWCNTs, (b, f) VMA-15, (c, g) VMA-30 and (d, h) VMA-60, respectively.

Fig. S6 STEM images and corresponding elemental mapping of $V_2O_5/MWCNTs$ core/shell hybrid aerogels.

Fig. S7 XPS spectra of V2p3/2 in (a) VMA-15, (b) VMA-30 and (c) VMA-60.

Fig. S8 Nitrogen adsorption–desorption isotherms (a) and Barrett–Joyner–Halenda (BJH) pore–size distribution (b) of acid–treated MWCNTs, prepared V_2O_5 aerogel and $V_2O_5/MWCNTs$ core/shell hybrid aerogels.

Fig. S9 CV and galvanostatic charge/discharge curves of (a, b) raw V_2O_5 powder, (c, d) original V_2O_5 aerogel and (e, f) MWCNTs, respectively.

Fig. S10 CV and galvanostatic charge/discharge curves of (a, b) VMA–15, (c, d) VMA–30, (e, f) VMA–60 and (g, h) VMA–120, respectively.

Fig. S11 CV (a) and galvanostatic charge/discharge curves (b) of V₂O₅ aerogel/MWCNTs composite (VMC-30).

 $\label{eq:spectral_$

Table S1 The electrolyte resistance (R_e) and charge transfer resistance (R_{ct}) calculated from the EIS profiles of raw V₂O₅ powder, synthesized aerogels, V₂O₅ aerogel/MWCNTs composite (VMC–30) and MWCNTs electrodes.

	V ₂ O ₅	VA	VMA-15	VMA-30	VMA-60	VMA-120	MWCNTs	VMC-30
$R_{e}(\Omega)$	0.52	0.54	0.52	0.52	0.48	0.49	0.48	0.47
$R_{ct}(\Omega)$	49.33	5.87	3.22	2.28	2.27	1.99	1.80	4.82