Supplementary information

Stability of NdBaCo_{2-x}Mn_xO_{5+ δ} (x = 0, 0.5) layered perovskites in humid conditions

investigated by high-temperature in situ neutron powder diffraction

Mona Bahout^{1*}, *Stevin S. Pramana*², *James Hanlon*¹, *Vincent Dorcet*¹, *Ron Smith*³, *Serge Paofai*¹ and *Stephen J. Skinner*^{2*}

¹Institut des Sciences Chimiques de Rennes, Equipe « Chimie du Solide et Matériaux », UMR CNRS 6226, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France

² Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom

³The ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

Figure S.I. 1. TGA of NdBaCo_{1.5}Mn_{0.5}O_{5+ δ} in dry N₂ followed by (black) heating/cooling in dry air, (blue) heating/cooling in wet air (*p*H₂O = 0.6 bar); heating/cooling rates are 10 °Cmin⁻¹; flow rate is 100 mL/min.

Figure S.I. 2. X-ray diffraction patterns at room temperature after heating/cooling cycles up to 800 °C in wet (60%H₂O) air of the (a) x = 0 sample, S.G. *Pmmm*, a = 3.89048(1), b = 3.90430(1) and c = 7.61791(2) Å, V = 115.720 (1) Å³, $\chi^2 \sim 1.6$, (b) x = 0.5 sample, S.G. *P4/mmm*, a = 3.89691(2) and c = 7.65564(4) Å, V = 116.258 (2) Å³, $\chi^2 \sim 1.8$.

Figure S.I. 3. Refined *a*-lattice parameters and unit cell volume of NdBaCo_{1.5}Mn_{0.5}O_{5+ δ} (x = 0.5) from neutron diffraction data.