Supporting Information

One-step encapsulation of Pd nanoparticles in MOF via a temperature control program

Liyu Chen, Xiaodong Chen, Hongli Liu, Cuihua Bai, Yingwei Li*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

E-mail: liyw@scut.edu.cn

Figure S1. Powder XRD patterns of UiO-67 samples: (a) UiO-67, (b) Pd^{II}-in-UiO-67, (c) Pd-in-UiO-67, and (d) Pd-in-UiO-67 after reaction.

Figure S2. Pore-size distribution curves of the as-synthesized UiO-67, Pd^{II}-in-UiO-67, and Pd-in-UiO-67.

Figure S3. The EDX pattern of Pd-in-UiO-67.

Figure S4. TEM image of unsupported Pd NPs prepared in DMF at 130 °C.

Figure S5. TEM image of Pd-in-UiO-67 synthesized by heating at 80 °C for 20 hours and 130 °C for 20 hours.

Figure S6. Activity profile for the reduction of styrene to ethylbenzene. Reaction conditions: styrene (0.1 mmol), Pd-in-UiO-67 (1% Pd), THF (2 mL), 1 atm H₂, 25 °C. (a) With catalyst, and (b) with filtrate.

Sample	$S_{BET}\left(m^2~g^{-1}\right)$	$S_{Langmuir} \left(m^2 \ g^{-1} ight)$	$V_{pore} (cm^3 g^{-1})$
UiO-67	2408	3045	1.09
Pd ^{II} -in-UiO-67	2008	2577	0.91
Pd-in-UiO-67	2163	2766	0.99

Table S1. Surface areas and pore volumes of the MOF samples.

Entry	Catalyst	Time (min)	Yield (%)
1	1% Pd-in-UiO-67	25	100
2	2% Pd-in-UiO-67	20	100
3	3% Pd-in-UiO-67	15	100
4	4% Pd-in-UiO-67	20	100

 Table S2. Results of hydrogenation of styrene.^a

^{*a*} Reaction conditions: styrene (0.1 mmol), catalyst (Pd 1 mol%), THF (2 mL), 1 atm H₂, 25 °C.

Catalyst	Т	P_{H2}	Time	Yield	Dof
	(°C)	(atm)	(min)	(%)	Kel.
Pd-in-UiO-67	25	1	15	100	This work
Pd/Tm-MOF	35	1	720	>99	1
Pd/BTP-POF	25	1	120	100	2
Pt/15TS	60	40	60	100	3
Pd/PEG	25	1	90	100	4
Pd(OAc)2@MONT	25	1	60	>99	5
Pd@PPI/SiO ₂	70	30	15	100	6
Pd@MOF	30	1	1800	100	7
Pd@CPP-F1	40	1.5	240	100	8
Pd/Fe ₂ O ₃	25	1	120	83	9
Pd-Pt/CNT	25	1	30	99	10

Table S3. Comparison of Pd-in-UiO-67 with other catalysts in the hydrogenation of styrene.

Entry	Subtrate	Product	Time (min)	Yield $(\%)^b$
1	Br	Br	20	100
2	\sim	\sim	15	100
3	$\sim\sim\sim$	\sim	15	100
4	\bigcirc	\bigcirc	20	100

Table S4. Hydrogenation of various olefins catalyzed by 1.0% Pd-in-UiO-67.^a

^{*a*} Reaction conditions: styrene (0.1 mmol), catalyst (Pd 1 mol%), THF (2 mL), 1 atm H₂, 25 °C. ^{*b*} The yield was determined by GC-MS analysis.

References

- 1. Y. Pan, D. Ma, H. Liu, H. Wu, D. He and Y. Li, J. Mater. Chem., 2012, 22, 10834.
- H. Zhong, Y. Gong, F. Zhang, L. Li and R. Wang, J. Mater. Chem. A, 2014, 2, 7502.
- 3. X. Li, W. Zheng, H. Pan, Y. Yu, L. Chen and P. Wu, J. Catal., 2013, 300, 9.
- 4. F.A. Harraz, S.E. El-Hout, H.M. Killa, I.A. Ibrahim, J. Catal., 2012, 286, 184.
- 5. G.-Q. Kong, S. Ou, C. Zou and C.-D. Wu, J. Am. Chem. Soc., 2012, 134, 19851.
- E. Karakhanov, A. Maximov, Y. Kardasheva, V. Semernina, A. Zolotukhina, A. Ivanov, G. Abbott, E. Rosenberg and V. Vinokurov, *ACS Appl. Mater. Interfaces*, 2014, 6, 8807.
- 7. Y.-X. Tan, Y.-P. He and J. Zhang, Chem. Commun., 2014, 50, 6153.
- 8. L. Li, C. Zhou, H. Zhao and R. Wang, Nano Res., 2015, 8, 709.
- 9. Y. Wang, Y. Deng, F. Shi, J. Mol. Catal. A-Chem., 2014, 395, 195.
- 10. E. Kim, H. S. Jeong, B. M. Kim, Catal. Commun., 2014, 45, 25.