Supporting Information

Network-like Mesoporous NiCo₂O₄ Grown on Carbon Cloth for High-Performance Pseudocapacitors

Suning Gao, Fan Liao*, Shuzhen Ma, Lili Zhu, Mingwang Shao*

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.

1. Materials Characterization.

The phase and crystallography of samples were characterized by XRD (Philips X'pert PRO MPD diffractometer) equipped with Cu K α radiation (λ = 0.15406 nm). The morphology of samples was examined by scanning electron microscopy (SEM, FEI-quanta 200 scanning electron microscope) equipped with EDAX and a Zeiss Supra 55 field scanning electron microscopy. Transmission electron microscope (TEM) image and high resolution TEM (HRTEM) image were recorded using a FEI Tecnai F20 transmission electron microscope with accelerating voltage of 200 kV. The chemical states of the products were studied using the X-ray photoelectron spectroscopy (XPS) measurement performed on Kratos AXIS UltraDLD ultrahigh vacuum surface analysis system) with Al K α radiation (1486 eV) as probe and an indium plate as the supporter of the powder samples. The Brunauere-Emmette-Teller (BET) specific surface area and the pore size distribution of these samples were investigated by the ASAP 2020 instrument at 77 K. The mass of electrode materials was weighed on a XS analytical balance (Mettler Toledo; δ = 0.01 mg).

2. Electrochemical Measurements.

An electrolyte of 3 M KOH aqueous solution was used at room temperature. The CC supported electroactive material serves directly as the working electrode. Pt wire

and a saturated calomel electrode (SCE) were used as the counter electrode and the reference electrode, respectively. EIS tests were made with a superimposed 5 mV sinusoidal voltage in the frequency range from 100 kHz-0.01 Hz.

3. XRD pattern of bare CC substrate and EDS spectrum of the NWM NiCo₂O₄.

Fig. S1a shows XRD pattern of the bare substrate CC, all peaks can be indexed tographite (JCPDS data No. 08-0415). EDS spectrum indicates that the atomic ratio of Co: Ni is 1.9 : 1, further confirming the results concluded from XRD and XPS.

Fig. S1. (a) XRD pattern of the bare substrate CC; and (b) EDS spectrum of the NWM $NiCo_2O_4$.

4. SEM images of NiCo₂O₄ with and without the capping agents.

Fig. S2. SEM images of $NiCo_2O_4$ (a) with P123 and EG, (b) with P123, (c) with EG,

and (d) without either P123 or EG.

5. SEM images of NWM NiCo₂O₄ on CC with different reaction times.

Fig. S3a shows some separate and small nanoflakes were formed at the beginning of the hydrothermal reaction. With the prolonged time, more nanoflakes coupled with bigger size were noticed. Three dimensional net-works like structures composed of highly uniform nanoflakes were formed as shown in Fig. S3c. When the reactive time reached to 4h, the formed structures also can be observed without obvious change.

Fig. S3. SEM images of NWM $NiCo_2O_4$ on CC with different reaction times: (a) 0.5 h,

(b) 1 h, (c) 2 h, and (d) 4 h, respectively. The scale bar is 200 nm.

6. BET and BJH of NiO NSs

Fig. S4 exhibits BET and BJH patterns with surface area of 108.6 m²/g and a major pore size distribution ranging from 2 to 5 nm.

Fig. S4. (a) BET and (b) BJH of NiO NSs.

7. CV and GCD curves of NiO NSs

Fig. S5a displays the CV curves at different scaning rates of NiO NSs array electrode, revealing the pseudocapacitive nature of the as-prepared sample. The potential of the redox peaks is not the same as that of NiCo₂O₄ due to the occurring of different faradaic pseudocapacitance reation NiO + OH⁻ \leftrightarrow NiOOH + e⁻.^{S1} Fig. S5b studies the GCD curves of NiO NSs at various current densities with asymmetric profile may attributed to polarization of the electrode.

Fig. S5. (a) CV and (b) GCD curves of NiO NSs at different scaning rates and various current densities.

8. Specific capacitances as a function of scan rates of CV

The SCs decrease with increasing scan rates (Fig. S6) due to the existing of some inaccessible active surface areas for charge storage at a high scan rate.

Fig. S6. Specific capacitances as a function of scan rates of CV.

9. CV of bare CC substrate and the curve controlled by diffusion in electrode reaction of NiCo₂O₄.

Fig. S7a shows CV of bare CC substrate at a scan rate of 10 mV/s with a capacitance calculated from formula (1) is nearly 1.8 F, while the capacitance of the $NiCo_2O_4/CC$ electrode is 608.2 F with a 0.33 mg loading. Fig. S7b reveals a linear behavior of peak current density and the square root of the scan rate of $NiCo_2O_4$.

Fig. S7. (a) CV of bare CC substrate; and (b) the curve controlled by diffusion in electrode reaction of $NiCo_2O_4$.

10. First 10 cycles of GCD curves of NWM NiCo₂O₄.

Fig. S8. First 10 cycles of GCD curves of NWM NiCo₂O₄.

11. Cycling performance of NiO electrode

The total capacitance loss of NiO electrodeafter 4000 cycles is around 20%, much worse than that of NWM NiCo₂O₄, is exhibited in Fig. S9.

Fig. S9. Cycling performance of NiO NSs electrode.

12. Cycling performance of NWM NiCo₂O₄ symmetric device.

Fig. S10. Cycling performance of NWM $NiCo_2O_4$ symmetric device calculated by repeated CD curves at a current density of 10 A/g.

13. The comparison of specific capacitance, capacitance retention and rate capability of the various NiCo₂O₄ samples.

Table S1. The comparison of specific capacitance, capacitance retention and rate capability of the network $NiCo_2O_4$ in this work and those of other nanostructured spinel electrode materials reported in the previous works.

Morphology	Capacitane	Rate capability	Cycling stability	Mass loading mg/cm ²	Ref.
nanowall-network	1225 F/ g	81.3 %	79%	0.0625	S2
NiCo ₂ O ₄	(5 A/g)	(5 A/g to	(2000 cycles)		
		40 A/g)			
Urchin-like	1650 F/g	81 %	90 %	-	S3
NiCo ₂ O ₄	(1 A/g)	(1 A/g to	(2000 cycles)		
		15 A/g)			
Flower-Shaped	1006 F/g	72.2%	93.2 %	3.0	S4
NiCo ₂ O ₄	(1 A/g)	(1 A/g to	(1000 cycles)		
Microsphere		20 A/g)			

Hierarchical	587 F/g	-	94 %	5	S5
porous network-	(1 A/g)		(3500 cycles)		
like					
NiCo ₂ O ₄					
NiCo ₂ O ₄	796 F/g	-	87.1 %	0.8	S6
nanosheets	(1 A/g)		(2400 cycles)		
Hierarchical	1619.1 F/g	35.3 %	-	-	S7
mesoporous	(2 A/g)	(2 A/g to			
NiCo ₂ O ₄		10 A/g)			
Chain-like	1284 F/g	76.8 %	97.5%	-	S 8
NiCo ₂ O ₄	(2 A/g)	(2 A/g to	(3000 cycles)		
nanowires		20 A/g)			
Hierarchical	895 F/g	76.5 %	73.2%	1.97	S9
NiCo ₂ O ₄ @NiCo ₂		(1 A/g to	(2000 cycles)		
O_4		20 A/g)			
NWM NiCo ₂ O ₄	1843 F/g	80%	90%	0.33	This
	(1 A/g)	(1 A/g to	(4000 cycles)		work
		32 A/g)			

14. The values of R_e , R_{ct} , C_{dl} , W and C_{ps} of NWM NiCo₂O₄ and NiO NS.

Table S2. The values of equivalent series resistance R_e , charge-transfer resistance R_{ct} , double-layer capacitance C_{dl} , Warburg resistance W and pseudocapacitive element C_{ps} simulated by ZsimpWin software of NWM NiCo₂O₄ and NiO NS.

	R _e	R _{ct}	C _{dl}	W	C _{ps}
	[ohm·cm ²]	[ohm·cm ²]	[F/cm ²]	[S·sec ⁵ /cm ²]	[F/cm ²]
NWM	1 041	0 5059	1 041E-5	0 2664	0 3476
NiCo ₂ O ₄	1.071	0.5057	1.0412 5	0.2004	0.5470
NiO NS	0.8505	2.41	0.001198	0.1205	0.2576

REFERENCES

S1 D. T. Dam, X. Wang and J. M. Lee, Nano Energy., 2013, 2, 1303-1313.

- S2 N. Padmanathan and S. Selladurai, RSC Adv., 2014, 4, 8341-8349.
- S3 Q. F. Wang, B. Liu, X. F. Wang, S. H. Ran, L. M. Wang, D. Chen and G. Z. Shen, J. Mater. Chem., 2012, 22, 21647-21653.
- S4 Y. Lei, J. Li, Y. Y. Wang, L. Gu, Y. F. Chang, H. Y. Yuan and X. Dan, ACS Appl. Mater. Interfaces, 2014, 6, 1773-1780.
- S5 C. Yuan, J. Li, L. Hou, J. Lin, X. Zhang and S. Xiong, J. Mater. Chem. A, 2013, 1, 11145-11151.
- S6 F. Z. Deng, L. Yu, M. Sun, T. Lin, G. Cheng, B. Lan and F. Ye, *Electrochim. Acta*, 2014, **133**, 382-390.
- S7 Y. F. Zhang, M. Z. Ma, J. Yang, H. Q. Su, W. Huang and X. C. Dong, *Nanoscale*, 2014, 6, 4303-4308.
- S8 R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang and J. Q. Hu, J. Mater. Chem. A, 2013, 1, 8560-8566.
- S9 X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang and J. Tu, ACS Appl. Mater. Interfaces, 2013, 5, 8790-8795.