Supporting Information

Functional Tuning of A-D-A Oligthiophenes: The Effect of Solvent Vapor Annealing on Blend Morphology and Solar Cell Performance

Gisela L. Schulz,[†] Mirjam Löbert,[†] Ibrahim Ata,[†] Marta Urdanpilleta,[‡] Mika Lindén,[§] Amaresh Mishra,[†]* and Peter Bäuerle[†]*

[†]Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany, E-mail: amaresh.mishra@uni-ulm.de, peter.baeuerle@uni-ulm.de [‡]Department of Applied Physics I, University of the Basque Country (UPV/EHU), Plaza de Europa, 1, 20018 Donostia - San Sebastián, Spain

[§]Institute of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

Figure S1. DSC trace of oligomers 1-5 measured under Ar flow at a heating rate of 10 °C/min.

It is known in the literature¹⁻³ that the $E_{1/2}$ or E^0 value can be estimated from a reversible stationary electrode polarogram from the fact that it occurs at a point 85.17% of the wave in the direction of positive potential within the order of experimental error. Using the simplified equation ($E^0_{irrev} = E(0.852I_p)$) one can also roughly estimate the E^0 values for the quasi- or irreversible redox waves. The E_p and E^0 values for the reduction waves are given in Table S1.

Table S1. Electrochemical data for the oligomer series 1-5.

Oligomer	E^{0}_{red}	$E_{p red}$	
	[V]ª	[V] ^b	
1	-1.62	-1.73	
2	-1.43	-1.46	
3	-1.45	-1.49	
4	-1.47	-1.52	
5	-1.47	-1.53	

^{*c*}Cyclic voltammetry in dichloromethane/TBAPF₆ (0.1 M), scan rate = 100 mV/s, referenced against Fc/Fc⁺. For the irreversible waves, the redox potentials E° were determined at I₀ = 0.852I_p.^{1-3 b}For comparison the maximum potential (E_{p}) values of the reduction waves are also given.

Figure S2. (a) Normalized absorption spectra of $1:PC_{61}BM$ and $2:PC_{61}BM$ blends made with before and after SVA. (b) GIXRD plot of the BHJ made using the same conditions. All films were spin-coated on PEDOT:PSS to accurately reproduce the active layer.

References

- 1. R. N. Adams, *Electrochemistry at Solid Electrodes*, Marcel Dekker: New York, 1969.
- 2. R. S. Nicholson, Anal. Chem., 1966, 38, 1406-1406.
- 3. R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36, 706-723.