Journal of Materials Chemistry A

## **Supporting Information**

High performance composite polymer electrolyte using polymeric ionic liquid-functionalized graphene molecular brushes

Yun-Sheng Ye,<sup>a\*</sup> Hao Wang,<sup>a</sup> Shu-Guang Bi,<sup>a</sup> Yang Xue,<sup>a</sup> Zhi-Gang Xue,<sup>a</sup> Xing-Ping Zhou,<sup>a</sup> Xiao-Lin Xie,<sup>a\*</sup> Yiu-Wing Mai<sup>b</sup>

- <sup>a.</sup> Address here. Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- <sup>b.</sup> Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney NSW 2006, Australia

|                    | Dispersibility of modified graphene |                  |           |                  |          |                  |     |                  |                             |
|--------------------|-------------------------------------|------------------|-----------|------------------|----------|------------------|-----|------------------|-----------------------------|
| Solvent            | PEG-N <sub>3</sub>                  | PEGB-FG          | PIL- (Br) | PILB(Br)-FG      | PIL-TFSI | PILB-FG          | PVI | PIL-FG           |                             |
| H <sub>2</sub> O   | 0                                   | 0                | 0         | 0                | $\times$ | $\times$         | 0   | $\times$         |                             |
| CH <sub>3</sub> OH | 0                                   | 0                | 0         | $\circ$          | 0        | $\circ$          | 0   | 0                |                             |
| Acetone            | 0                                   | $^{\circ}$       | 0         | $\bigtriangleup$ | 0        | $\bigtriangleup$ | 0   | 0                |                             |
| THF                | 0                                   | 0                | 0         | $\circ$          | 0        | $\circ$          | 0   | 0                |                             |
| DMSO               | 0                                   | 0                |           | $\bigtriangleup$ | 0        | $^{\circ}$       |     | 0                |                             |
| DMF                | 0                                   | 0                | 0         | 0                | 0        | 0                | 0   | 0                |                             |
| CHCl <sub>3</sub>  | 0                                   | 0                | 0         | $^{\circ}$       | 0        | $^{\circ}$       | 0   | 0                | $\bigcirc$ , W-11, 1,       |
| Toluene            | 0                                   | $\bigtriangleup$ | 0         | $\bigtriangleup$ | $\times$ | $\times$         | 0   | 0                | $\bigcirc$ : well dispers   |
| EA                 | 0                                   | 0                | 0         | $\bigtriangleup$ |          | $\times$         | 0   | 0                | $\triangle$ : Partial dispe |
| EG                 | 0                                   | 0                | 0         | 0                | ×        | 0                | 0   | $\bigtriangleup$ | $\times$ : Poor dispers     |

Figure S1. Dispersibility of polymer-FGs in tested solvents.







Figure S3. Thermal properties of PEO/Li<sup>+</sup> and PEO/LI<sup>+</sup>/polymer-FG CPEs.



Figure S4. XRD pattern of (a) PEO/Li<sup>+</sup> and (b) PEO/Li<sup>+</sup>/PIL(TFSI)-FG<sub>brush</sub>.



Figure S5. The ionic conductivity of PEO/Li<sup>+</sup> PEs with various polymer-FG contents at 30-80 °C.



Figure S6. Linear sweep valtammograms of PEO/Li<sup>+</sup>/polymer-FG at 60 °C at a scan rate of 0.1 mV s<sup>-1</sup>.

## **Calculation of Grafting Density**

$$\overline{A}_{pg1} = \frac{M_C W_P}{M_P W_C}$$
 (chains per carbon) eq S1

The grafting density can also be expressed in the following relationship:

$$\overline{A}_{pg2} = \frac{M_C W_P \times 10^8}{M_P A_b W_C} \text{ (average chain density on a both sides)} eq S2$$

Where:  $M_C$  is the relative molar mass of carbon ( $M_C = 12 \text{ g mol}^{-1}$ ),  $M_P$  the average molecular weight ( $M_n$ ) of grafted polymer (calculated from GPC), and  $W_C$  and  $W_F$  the weight fractions of the polymergraphene backbone (not including propargyl phenyl groups and grafted polymer) and the grafted polymer, respectively.  $A_b$  represents the area of a benzene ring in graphene (5.24 Å<sup>2</sup>).  $W_C$  and  $W_P$  can be readily obtained from the TGA curves of polymer functionalized graphene composite because the polymer functionalized graphene has a weigh loss stage below 600 °C, and the decomposed weight fraction above 800 °C is assigned to  $W_P$  and propargyl phenyl groups.