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Supporting Information

                                                                                                                                                    

Figure S1: (a) An AFM image of a step edge in a scored CsSnI3 film on glass prepared with 10% 
excess SnI2. The film was spun cast at 4000 rpm from an 8 wt.% DMF solution. The apparent 
downward alignment of crystallites in image (a) is an image artefact.; (b) A representative cross-
section of the AFM image shown in (a). This film is 40 – 60 nm in thickness and has a mean thickness 
of 50 nm, from the histogram shown in (c).; (d), (e), and (f) show an AFM image, a representative 
cross-section of the AFM image, and a histogram of the step edge shown for a 15 wt.% CsSnI3 film 
spin cast at 4000 rpm onto glass respectively. This film has a height of 50 – 90 nm with an average 
height of 73 nm.   
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Figure S2: High resolution XPS spectra and peak fitting for: (a) O1s of CsSnI3 film prepared from 
stoichiometric quantities of CsI and SnI2.; (b) O1s region for CsSnI3 oxidised in air for 5 hours. The 
peaks at 530.7 eV and 531.9 eV are indicative of SnO2

1,2 and adsorbed O2
3 respectively.; (c)  Sn 3d 

region for CsSnI3 oxidised for 5 hours. There are two peaks due to spin-orbit splitting that correspond 
to electrons from the 3d5/2 and 3d3/2 states. The difference in binding energy of Sn 3d electrons in 
Cs2SnI6 and SnO2

2,4 cannot be resolved.

Figure S3: IPCE of ITO | CuI | CsSnI3 | C60 (black - 10% excess SnI2) or PC60BM (red - 0% excess 
SnI2) | BCP | Al device.

(a) (b) (c)
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Figure S4: High resolution XPS spectra and peak fitting of the Sn 3d region for: (a) a CsSnI3 film 

prepared from stoichiometric quantities of CsI and SnI2. The shoulder at high binding energy on both   

peaks is assigned to Sn in a Cs2SnI6 environment. The binding energies for Sn in a Cs2SnI6 

environment are given in Figure S2 (c). Cs2SnI6 is present because the sample is unavoidably exposed 

to air for ~ 1 minute when being transferred from the nitrogen filled glove box to the spectrometer 

vacuum system; (b) a CsSnI3 film prepared with 10 mol % excess SnI2. Notably, the peak fitting 

includes a small peak that can be assigned to Sn in a SnI2 environment. The XPS spectrum for Sn 3d 

electrons in SnI2 is given in (c). Since  95% of the photoelectrons originate from the top ~ 7 nm of 

the sample surface such a small SnI2 peak is consistent with a very small amount of SnI2 at the CsSnI3 

surface; (c) a SnI2 film prepared by thermal evaporation; (d) a SnI4 film prepared by thermal 

evaporation. 
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Figure S5: J0.5 vs. V graph for unipolar diodes with structure: ITO glass  MoO3  SnI2 (50 or 100 nm)| 

MoO3| Al. The hole mobility is extracted from the gradient assuming a trap free space charge limited 

current and r = 30.30.5 

Figure S6: UPS spectra showing the secondary electron cut-off (a) and valence band edge (b) regions 

for CuI from which the ionization potential is estimated to be 5.84 eV  0.05 eV. Measurements were 

performed on 50 nm CuI films thermally evaporated onto Au substrates.  
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Figure S7:  UPS spectra showing the secondary electron cut-off (a) and valence band edge (b) 
regions for SnI2 on Au. The film was evaporated at 0.5 – 1 Å s−1 to a thickness of 30 nm.

Figure S8: UV/ Vis/ NIR absorbance spectrum of a 100 nm CuI film deposited on glass by thermal 
evaporation. The Eg is estimated to be ~ 3.02 eV.
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Figure S9: Absorption spectrum of CsSnI3 films spun cast at 4000 rpm from an 8 wt.% DMF solution 
onto glass with 0 mol% (top) and 10 mol% (bottom) excess SnI2, measured at various time intervals 
(in minutes) after exposure to laboratory air. The spectra convert from that of CsSnI3 to that of 
Cs2SnI6 over a time frame of ~ 60 minutes. However, perovskite films sandwiched between the charge 
transport layers and electrodes in a PV device are expected to oxidise more slowly than a perovskite 
film on glass (as above) and so the rate of oxidation of the isolated film cannot be compared directly 
with the rate of device degradation. 
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Table S1: Key PPV device characteristics summarizing the performance of devices using 10 mol% 
excess SnI2 in the CsSnI3 layer and different electron acceptors with and without a CuI HTL. Also 
included in the table is data relating to devices fabricated using a solution processed CuI layer. The 
errors are given as  1 S.D. n is the device sample size in each case.

Figure S10: JV curve of individual ITO| CuI| CsSnI3| PC61BM| BCP| Al device with forward (−1 V to 
+1 V) and reverse (+1 V to −1 V) scans showing negligible hysteresis effect. 
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Device n Voc / V Jsc / mA cm−2 FF η / % η (best) / %
C60 (40nm), using solution 
processable CuI

18 0.243 ± 0.024 11.43 ± 0.89 0.413 ± 0.028 1.16 ± 0.21 1.40

C60 (40 nm) no CuI 17 0.262 ± 0.031 11.67 ± 0.50 0.375 ± 0.022 1.16 ± 0.18 1.40
C60 (40nm) 100 nm CuI 18 0.282 ± 0.030 11.6 ± 1.0 0.434 ± 0.032 1.42 ± 0.23 1.72
PC61BM (15mg ml-1) no 
CuI

11 0.261 ± 0.042 8.6 ± 1.1 0.42 ± 0.065 1.02 ± 0.39 1.59

PCBM (15 mg ml−1), 70 
nm CuI

16 0.355 ± 0.026 8.94 ± 0.27 0.538 ± 0.043 1.72 ± 0.26 2.07

ICBA (7mg ml−1, 1000 
rpm) no CuI

17 0.352 ± 0.033 10.7 ± 1.8 0.468 ± 0.075 1.79 ± 0.56 2.65

ICBA (5 mg ml−1) 100 nm 
CuI

16 0.491 ± 0.057 7.01 ± 0.68 0.500 ± 0.045 1.73 ± 0.44 2.60

ICBA (3 mg ml−1) 100 nm 
CuI

14 0.430 ± 0.061 12.30 ± 0.48 0.395 ± 0.053 2.13 ± 0.53 2.76
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