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Figure S1: (a) An AFM image of a step edge in a scored CsSnl; film on glass prepared with 10%
excess Snl,. The film was spun cast at 4000 rpm from an 8 wt.% DMF solution. The apparent
downward alignment of crystallites in image (a) is an image artefact.; (b) A representative cross-
section of the AFM image shown in (a). This film is 40 — 60 nm in thickness and has a mean thickness
of 50 nm, from the histogram shown in (c).; (d), (e), and (f) show an AFM image, a representative
cross-section of the AFM image, and a histogram of the step edge shown for a 15 wt.% CsSnl; film
spin cast at 4000 rpm onto glass respectively. This film has a height of 50 — 90 nm with an average
height of ~73 nm.
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Figure S2: High resolution XPS spectra and peak fitting for: (a) Ols of CsSnl; film prepared from
stoichiometric quantities of CsI and Snl,.; (b) Ols region for CsSnl; oxidised in air for 5 hours. The
peaks at ~530.7 eV and ~531.9 eV are indicative of SnO,!? and adsorbed O3 respectively.; (¢) Sn 3d
region for CsSnl; oxidised for 5 hours. There are two peaks due to spin-orbit splitting that correspond
to electrons from the 3ds, and 3d;, states. The difference in binding energy of Sn 3d electrons in
Cs,Snl; and SnO,%* cannot be resolved.
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Figure S3: IPCE of ITO | Cul | CsSnl; | Cq (black - 10% excess Snl,) or PC¢BM (red - 0% excess
Snl,) | BCP | Al device.
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Figure S4: High resolution XPS spectra and peak fitting of the Sn 3d region for: (a) a CsSnl; film
prepared from stoichiometric quantities of Csl and Snl,. The shoulder at high binding energy on both
peaks is assigned to Sn in a Cs,Snls environment. The binding energies for Sn in a Cs,Snlg
environment are given in Figure S2 (c). Cs,Snlg is present because the sample is unavoidably exposed
to air for ~ 1 minute when being transferred from the nitrogen filled glove box to the spectrometer
vacuum system; (b) a CsSnl; film prepared with 10 mol % excess Snl,. Notably, the peak fitting
includes a small peak that can be assigned to Sn in a Snl, environment. The XPS spectrum for Sn 3d
electrons in Snl, is given in (c). Since ~ 95% of the photoelectrons originate from the top ~ 7 nm of
the sample surface such a small Snl, peak is consistent with a very small amount of Snl, at the CsSnl;
surface; (¢) a Snl, film prepared by thermal evaporation; (d) a Snl, film prepared by thermal

evaporation.
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Figure S5: J°3 vs. V graph for unipolar diodes with structure: ITO glass | MoOs | Snl, (50 or 100 nm)|
MoQ;| Al. The hole mobility is extracted from the gradient assuming a trap free space charge limited

current and &, = 30.30.0
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Figure S6: UPS spectra showing the secondary electron cut-off (a) and valence band edge (b) regions
for Cul from which the ionization potential is estimated to be 5.84 eV + 0.05 eV. Measurements were

performed on 50 nm Cul films thermally evaporated onto Au substrates.
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Figure S7: UPS spectra showing the secondary electron cut-off (a) and valence band edge (b)
regions for Snl, on Au. The film was evaporated at 0.5 — 1 A s7! to a thickness of 30 nm.
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Figure S8: UV/ Vis/ NIR absorbance spectrum of a 100 nm Cul film deposited on glass by thermal
evaporation. The E, is estimated to be ~ 3.02 eV.
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Figure S9: Absorption spectrum of CsSnl; films spun cast at 4000 rpm from an 8 wt.% DMF solution
onto glass with 0 mol% (top) and 10 mol% (bottom) excess Snl,, measured at various time intervals
(in minutes) after exposure to laboratory air. The spectra convert from that of CsSnl; to that of
Cs,Snlg over a time frame of ~ 60 minutes. However, perovskite films sandwiched between the charge
transport layers and electrodes in a PV device are expected to oxidise more slowly than a perovskite
film on glass (as above) and so the rate of oxidation of the isolated film cannot be compared directly
with the rate of device degradation.



Device n V,/'V J./mAcecm? FF n/! % 5 (best) / %
Cgo (40nm), using solution 18 0.243 +0.024 11.43 £ 0.89 0.413 +£0.028 1.16 £0.21 1.40
processable Cul

Cg0 (40 nm) no Cul 17 0.262+0.031 11.67 £0.50 0.375 £ 0.022 1.16£0.18 1.40
Cgo (40nm) 100 nm Cul 18 0.282+0.030 11.6 1.0 0.434 +0.032 1.42+£0.23 1.72
PC¢BM (15mg ml') no 11 0.261 +0.042 86=+1.1 0.42 £ 0.065 1.02 £0.39 1.59
Cul

PCBM (15 mg ml™), 70 16 0.355+0.026 8.94 +£0.27 0.538 +£0.043 1.72 £0.26 2.07
nm Cul

ICBA (7mg ml™, 1000 17 0.352+0.033 10.7£1.8 0.468 £ 0.075 1.79 £0.56 2.65
rpm) no Cul

ICBA (5 mgml 1) 100 nm 16 0.491 +0.057 7.01 +£0.68 0.500 = 0.045 1.73 £0.44 2.60
Cul

ICBA 3mgml 1) 100 nm 14 0.430 +0.061 12.30+0.48 0.395+0.053 2.13+£0.53 2.76

Cul

Table S1: Key PPV device characteristics summarizing the performance of devices using 10 mol%
excess Snl, in the CsSnl; layer and different electron acceptors with and without a Cul HTL. Also

included in the table is data relating to devices fabricated using a solution processed Cul layer. The

errors are given as = 1 S.D. n is the device sample size in each case.
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Figure S10: JV curve of individual ITO| Cul| CsSnl;| PCs;BM| BCP| Al device with forward (=1 V to
+1 V) and reverse (+1 V to —1 V) scans showing negligible hysteresis effect.
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