Terthiophene-C₆₀ dyad as donor/acceptor compatibilizer for developing highly stable P3HT/PCBM bulk heterojunction solar cells

Rathinam Raja^{a,} *, Wei-Shin Liu^b, Chuen-Yo Hsiow^c, Syang-Peng Rwei^d, Wen-Yen Chiu^{b,c}, Leeyih Wang^{a,c,*}

^aCenter for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
^bDepartment of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
^cInstitute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
^dInstitute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, 10608, Taiwan

Figure S1 J-V characteristics of electron-only (a & c) and hole-only (b & d) devices fabricated from P3HT/PCBM blends, in which various weight ratios of PCBM is replaced with 3T-H-C₆₀ or 3T-EH-C₆₀.

Figure S2 *J*–*V* characteristics of electron-only (a, c & e) and hole-only (b, d & f) devices fabricated from P3HT/PCBM, P3HT/PCBM:3T-H-C₆₀ (1 wt%) and P3HT/PCBM:3T-EH-C₆₀ (3 wt%) blends, which were annealed at 130 °C for different periods.