
Supporting Information

Binder-free Co-CoO_x nanowire array for lithium ion battery with excellent rate capability and ultra-long cycle life

Liang Zhan^a, Suqing Wang*^a, Liang-xin Ding^a, Zhong Li^a and Haihui Wang*^{ab}

^aSchool of Chemistry & Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640,People's Republic of China; E-mail: cesqwang@scut.edu.cn, hhwang@scut.edu.cn; ^bSchool of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.

Fig. S1 XRD patterns of the as-prepared Co-CoO_x NWAs with Ti foil with the scan rate of 0.01 s⁻¹. Metallic Co has two peaks at 41.6 ° and 44.5°. Diffraction peaks of CoO and Co_3O_4 are not observed.

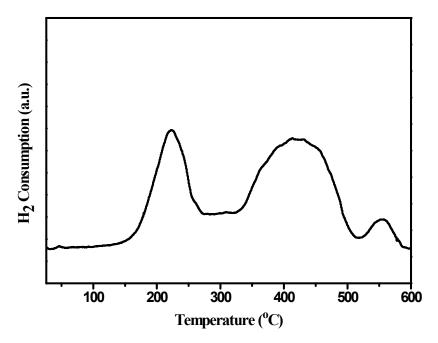


Fig. S2 H₂-TPR profile of the obtained Co-CoO_x NWAs. Two main reduction peaks were observed, which belongs to CoO_x .^{1, 2}

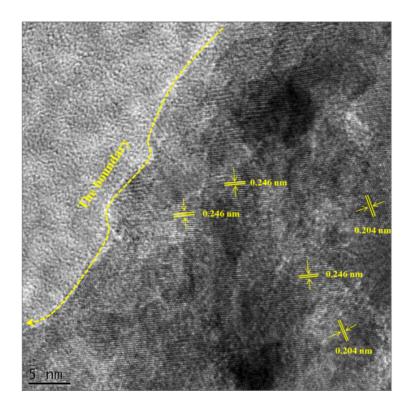
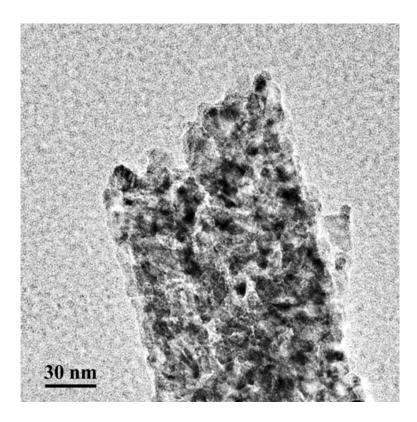
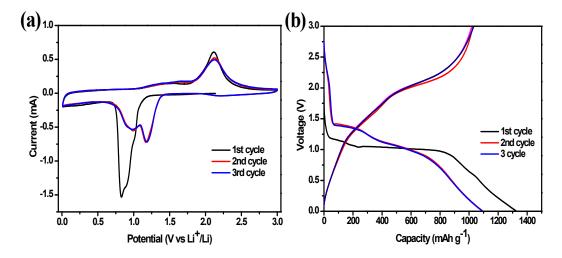
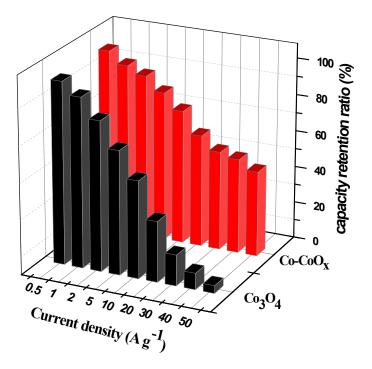
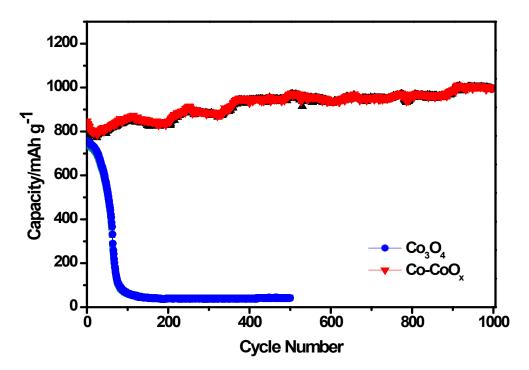


Fig. S3 HRTEM image of the Co-CoO_x NWAs.


Fig. S4 TEM image of the $Co-CoO_x$ nanowire.

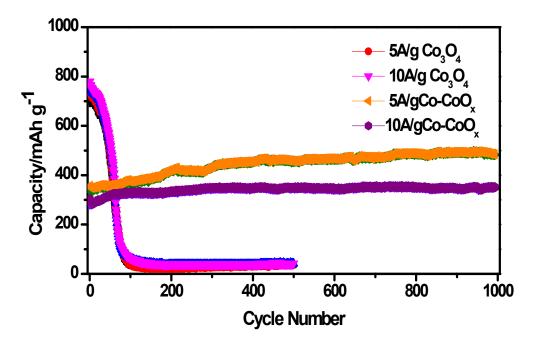

Fig. S5 (a) The first three cyclic voltammograms of the Co_3O_4 NWAs electrode, (b) Typical charge and discharge curves of first three cycles at a current density of 0.5 A g^{-1} of Co_3O_4 NWAs. These data are in accord with the performance of grass-like Co_3O_4 NWAs in our previous work.³

Fig. S6 Capacity retention ratios of Co_3O_4 and $Co-CoO_x$ NWAs at various current densities. Capacity retention ratio is the ratio of the discharge capacity at an assigned rate to the discharge capacity at 0.5A g⁻¹. Obviously, Co-CoO_x NWAs maintain higher capacity retention ratio than Co_3O_4 NWAs at the same rate. Along with the increasing of the rate, the gap between $Co-CoO_x$ NWAs and Co_3O_4 NWAs is widened. Even at 50 A g⁻¹, the capacity retention ratio of $Co-CoO_x$ NWAs also keep at 46.6%, while that of Co_3O_4 NWAs is only 4.2%.

Fig. S7 Cycling performance of Co_3O_4 and $Co-CoO_x$ at a current density of 10 A g^{-1} . The capacity data are based on the mass of CoO_x . $Co-CoO_x$ NWAs show a high reversible capacity of 990 mAh g^{-1} at 10A g^{-1} after 1000 cycles, while Co_3O_4 NWAs exhibit a rapid capacity fading in the first 100 cycles at 10 A g^{-1} .

Fig. S8 Cycling performance of Co_3O_4 and $Co-CoO_x$ at current densities of 5 A g^{-1} and 10 A g^{-1} . These capacity data are based on the total mass of Co and CoO_x . It is obvious that $Co-CoO_x$ NWAs have a better cycle performance than Co_3O_4 NWAs even when metallic Co is include in active materials.

Fig S9 SEM image of Co-CoO_x NWAs from the side view after 200 cycles at 20A g⁻¹. After 200 cycles, the thickness of Co-CoO_x array changes to 6 μ m. The change of electrode thickness is related to the large volume change of Co-CoO_x array during cycling, and the formation of solid electrolyte interphase (SEI) film.

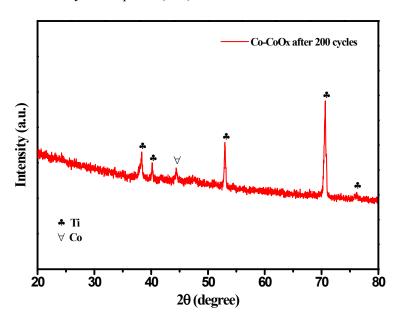


Fig. S10 XRD patterns of Co-CoO_x array after 200 cycles at 20 A g⁻¹

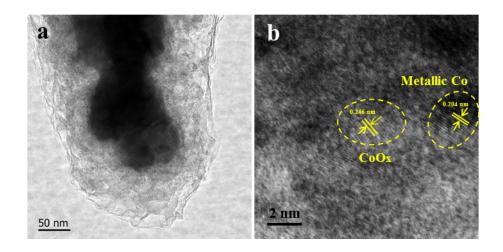


Fig. S11 TEM images of Co-CoOx array electrode after 200 cycles at 20 A g⁻¹.

References

- 1. Y. Ren, P. G. Bruce and Z. Ma, J. Mater. Chem., 2011, 21, 9312.
- 2. B. Wang, Z. Qin, G. Wang, Z. Wu, W. Fan, H. Zhu, S. Li, Y. Zhang, Z. Li and J. Wang, Catalysis Lett., 2013, 143, 411-

417.

3. L. Zhan, S. Wang, L. Ding, Z. Li and H. Wang, *Electrochim. Acta*, **2014**, 135, 35-41.