Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

RSCPublishing

Supporting Information

Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering[†]

Jickson Joseph,^a Anjali Paravannoor,^a Shantikumar V. Nair,^a Zhao Jun Han,^b Kostya (Ken)

Ostrikov^{b,c*} and Avinash Balakrishnan^{a*}

^{*a*} Nanosolar Division, Amrita Centre for Nanosciences, AIMS, Ponekkara, Kochi 682041, India

E-mail: avinash.balakrishnan@gmail.com

^b CSIRO Manufacturing Flagship, P.O. Box 218, Bradfield Road, Lindfield, NSW 2070, Australia

E-mail: kostya.ostrikov@csiro.au

^c School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4000, Australia

Figure S1. (a) TEM images, (b) diameter size distribution, (c) XRD and (d) Raman spectra of the carbon nanobeads used as the precursors for synthesizing carbon sponges.

Figure S2. Schematic illustration showing the formation mechanism of graphitic carbon nanobeads obtained from camphor.

Figure S3. Raman spectra for samples-1, S-2 and S-3

Figure S4. CV curves of (a) sponges at different surfactant concentrations at a scan rate of 20 mV/s, and (b) S-3 at different scan rates from 1 to 20 mVs⁻¹.

Figure S5. Typical FT-IR spectrum of the S-3 carbon sponge. The spectrum showed O-H stretching (3200-3400 cm⁻¹), C=O and C-O stretching (1629 cm⁻¹) and aromatic C=C stretching (1400-1600 cm⁻¹). The bands corresponding to anti-symmetric and symmetric stretching vibrations of =CH₂ were seen at 2925 and 2853 cm⁻¹, respectively.

Figure S6. (a) Constant current discharge curves of S-3 sample at different current densities. (b) Constant current discharge curvesof S-3 at the 1st cycle and the 5000th cycle at a current density of 0.015 mA g⁻¹.

Figure S7. (a) Typical cyclic voltammetry curve at a scan rate of 100 mVs⁻¹ and (b) galvanostatic discharge curve at a current density of 1.5 mA for the commercial AEC.

Reference	Electrode	Phase at 120	<i>f</i> (Hz) at	$ au_{RC}$	$ au_0$	CA
	materials	Hz	-45°	(µs)	(µs)	(µFcm ⁻²)
Miller et al. ¹	Vertical	82°	15000	200	NA	<200
	Graphene					
Sheng et al. ²	Electrochemi	85.5°	4200	1350	240	<1000
	cal reduced					
	graphene					
	oxide					
Du and Pan ³	Carbon	<75°	636	NA	1500	NA
	nanotubes					
Lin et al. ⁴	Graphene-	81.5°	1343	195	820	2160
	Carbon					
	nanotube					
	carpets					
El-Kady et al. ⁵	Laser Scribed	<20°	30	NA	NA	3670
	Graphene					
Commercial*	Aluminium	85.5	20000	150	NA	<100
(Present study)	electrolytic					
(Tresent study)	capacitor					
Present Work	Camphoric	78 °	4200	319	371	487
	carbon					
	sponges					

Table S1: Performance of various metrics of the devices made in this study with that of other literature reports.

*As obtained from the manufacturer

References

- 1. J. R. Miller, R. A. Outlaw, B. C. Holloway, Science, 2010, 329, 1637.
- 2. K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Sci. Rep., 2012, 2, 247.
- 3. C. Du, N. Pan, J. Power Sources, 2006, 160, 1487.
- 4. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson, J. M. Tour, Nano Lett., 2013, 13, 72.
- 5. M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science, 2012, 335, 1326.