Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Free-Standing Composite Hydrogel Film for Superior Volumetric Capacitance

Mahmoud Moussa^{a,b}, Zhiheng. Zhao^a, Maher F. El-Kady^{c,d}, Huakun Liu^e, Andrew Michelmore^a, Nobuyuki Kawashima^a, Peter Majewski^a, Jun Ma^{a*}

^aMawson Institute and School of Engineering, University of South Australia, Mawson Lakes, SA5095, Australia,

^bDepartment of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62111, Egypt,

^cDepartment of Chemistry & Biochemistry California, University of California, Los Angeles, CA 90095, USA.

^dDepartment of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt,

eInstitute for Superconducting and Electronic Materials, University of Wollongong, Australia

Fig. S1. SEM images of (a) a composite of polyaniline and poly (2-acrylamido-2-methyl-1-propanesulfonic acid (denoted PANi-PAMPA), (b) PANi-nanotubes and (c) PANi-nanofibers.

Figure S2. Photos of polyaniline/graphene hydrogel (PANi/ graphene hydrogel) in presence of (a) PANi- PAMPA, (b) PANi- nanotubes and (c) PANi-nanofibers.

Figure S3. SEM of free-standing PANi/graphene hydrogel film illustrates its layer structure at different magnifications.

Figure S4. Electrochemical performance of PANi/graphene hydrogel electrodes in H_2SO_4/HQ : (b) correlation between current and scan rate in H_2SO_4 , (a) Cyclic votammograms (CVs) at different scan rates in H_2SO_4/HQ , (b) The charge/discharge curves (CDs) at different current densities in H_2SO_4/HQ , (c) cycling performance in H_2SO_4/HQ , and (e) the areal capacitances at different current densities.

Table S1. Reported gravimetric and volumetric capacitances of some graphene materials.

Materials	Electrolyte ρ	(g/cm ³)	Electrode configuration	C _{wt} (F/g)	C _{vol} (F/cm ³)	Ref.
PANi/graphene hydrogel	$1 \text{ M H}_2 \text{SO}_4$	1.02	Two	223.82	228.30	This work
PANi/graphene hydrogel	(1 M H ₂ SO ₄ /0.4 M HQ)	1.02	Two	580.52	592.96	This work
				(0.4 A/g)	(0.4 A/g)	
High density porous graphene	6 M KOH	1.58	Two	238.00	376.00	[2]
Carbon nanotubes-graphene fibres	PVA/H ₃ PO ₄	0.59	Two	-	300.00	[3]
					(26.7 mA/cm ³)	
Compact reduced graphene gel	1 M H ₂ SO ₄	1.25	Two	191.70	255.5	[1]
				(0.1 A/g)	(0.1 A/g)	
Holey graphene frameworks	$1 \text{ M H}_2 \text{SO}_4$	0.71	Two	310.00	220.10*	[4]
				(1 A/g)	(1 A/g)	
Porous carbon layer/graphene	6 M KOH	-	Three	481.00	212.00	[5]
				(0.5 A/g)	(0.5 A/g)	
Graphene hydrogel	$1 \text{ M H}_2 \text{SO}_4$	0.05	Three	258.00	12.9*	[6]
				(0.3 A/g)	(0.3 A/g)	
Oriented graphene hydrogel	1 M H ₂ SO ₄	0.069	Two	215.00	14.8*	[7]
				(0.1 A/g)	(0.1 A/g)	
Graphene hydrogel film	$1 \text{ M H}_2 \text{SO}_4$	0.167	Two	190.00	31.67*	[8]
				(1 A/g)	(1 A/g)	
Functionalized graphene hydrogel film	1 M H ₂ SO ₄	-	Two	441.00	-	[9]
				(1 A/g)		
Self-assembled graphene hydrogel	5 M KOH	-	Two	160.00	-	[10]
				(1 A/g)		

* The volumetric capacitance (C_{vol}) = gravimetric capacitance (C_{wt}) × Packing density (ρ) ^[1].

References

- [1] X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534.
- [2] Y. Tao, X. Xie, W. Lv, D.-M. Tang, D. Kong, Z. Huang, H. Nishihara, T. Ishii, B. Li, D. Golberg, F. Kang, T. Kyotani, Q.-H. Yang, Sci. Rep. 2013, 3.
- [3] D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat Nano 2014, 9, 555.
- [4] Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang, X. Duan, Nat Commun 2014, 5.
- [5] J. Yan, Q. Wang, C. Lin, T. Wei, Z. Fan, Advanced Energy Materials 2014, 4, n/a.
- [6] Q. Wu, Y. Sun, H. Bai, G. Shi, Physical Chemistry Chemical Physics 2011, 13, 11193.
- [7] X. Yang, J. Zhu, L. Qiu, D. Li, Advanced Materials 2011, 23, 2833.
- [8] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano 2013, 7, 4042.
- [9] Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang, X. Duan, Advanced Materials 2013, 25, 5779.
- [10] Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano 2010, 4, 4324.