Supporting Information

Boron-doped onion-like carbon with enriched substitutional boron: relationship between electronic property and catalytic performance

Yangming Lin, ^{*a,b*} Yansong Zhu, ^{*b*} Bingsen Zhang, ^{*b*} Yoong Ahm Kim, ^{*c*} Morinobu Endo, ^{*d*} and Dang Sheng Su, ^{*b,e**}

^a School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China. Fax: +86-24-83970019; Tel: +86-24-83970029;

^b Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China. Fax: +86-24-83970019; Tel: +86-24-83970029; E-mail: dssu@imr.ac.cn

^c School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu Kwangju, 500-757, Korea.

^d Carbon Institute of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.

Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society,
Faradayweg 4-6, Berlin, 14195, Germany.

Fig. S1 (A)-(B) the detailed B_x/C species distribution diagram of the various B-OLC samples.

Entry	Binding	FWHM	Bx/C	At. %						
	energy (eV)	(eV)		B-OLC-1-5	B-OLC-2-5	B-OLC-3-5	B-OLC-4-5	B-OLC-1-10	B-OLC-1-20	
boron atom	- 196 5	1.05	P1/C		0 174	0.224	0.27			
cluster (B1)	~100.5	1.25	BI/C		0.174	0.234	0.27			
B ₄ C (B2)	~187.6	1.35	B2/C	0.132	0.225	0.214	0.111	0.284	0.65	
substitutional										
boron	100.0	1 20	D2/C	0.206	0 194	0 112	0.1	0.641	1.06	
species BC3	~188.8	1.59	B3/C	0.290	0.164	0.112	0.1	0.041	1.00	
(B3)										
BC ₂ O (B4)	~190.1	1.45	B4/C	0.31	0.153			0.641	1.354	
B-N (B5)	~190.7	1.49	B5/C			0.082	0.081			
BCO ₂ (B6)	~191.3	1.54	B6/C	0.183	0.102			0.451	0.92	
B ₂ O ₃ (B7)	>192.8	1.54	B7/C	0.08	0.153	0.092	0.071	0.294	0.58	
Total baran	196 5~104 5	1 2~1 6	Total	10	0.00	0.72	0.63	2 21	4.57	
	100.0**194.0	1.2~1.0	B/C	1.0	0.99	0.75	0.05	2.31	4.07	

Table S1. Distribution of element species obtained from the deconvolution of the C1s and B1s Peaks by XPS. ^(a)

(a) The fitting is performed by fixing the peak maximum within \pm 0.1 eV for all spectra and applying a full width half-maximum (FWHM) of 1.2-1.6 eV. The value of the mixed Gaussian-Lorentzian is maintained at 30 %.

Fig. S2 (A) XPS C1s spectra of the representative samples. (B) Nitrogen adsorptiondesorption isotherm distribution of the representative samples.

Fig. S3 TG profiles of various un-doped and doped OLC samples at a heating rate of $10 \text{ K} \cdot \text{min}^{-1}$ under different atmospheres. (A) dry air, (B) argon gas.

Fig. S4 XRD patterns of UDD and OLC-1. The orange histogram represents the unpurified BaK_XSO4 (NO. PDF#37-0803) contamination in the commercial UDD.

The combustion residue of pure OLC is about 0.89 wt%, which is mainly attributed to the unpurified BaK_xSO4 in the origin commercial UDD. Besides, the contaminations in the commercial UDD involve Fe<50 ppm, Cr<10 ppm, Al<50 ppm, Cu<10 ppm, Mg<10 ppm, Ti<10 ppm and Ca<50 ppm, which are tested by inductively coupled plasma emission spectrometer (ICP).

Table S2. Work functions and valence band edges of various pristine and low doped-OLC samples obtained by UPS.

Sample	OLC-2	B-OLC-2-5	OLC-3	B-OLC-3-5	OLC-4	B-OLC-4-5
Preparation Temperature (°C)	1800	1800	2100	2100	2400	2400
Work Function (eV)	4.72	4.75	4.96	4.99	5.24	5.26
Valence Band Edge(eV)	1.35	1.37	1.42	1.43	1.50	1.50
The content of BC ₃ species		~0.18		~0.11		~0.1

Fig.S5 Rotating disk electrode (RDE) voltammograms recorded with OLC-2, B-OLC-2-5, OLC-3, B-OLC-3-5, OLC-4 and B-OLC-4-5 in O_2 -saturated 0.1 M KOH at 900 rpm, scan rate: 5 mV s⁻¹