Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

High Performing Na_XCoO₂ as a Cathode material for Rechargeable Sodium Batteries

B Venkata Rami Reddy, R Ravikumar, C Nithya and S Gopukumar

Electronic supplementary information

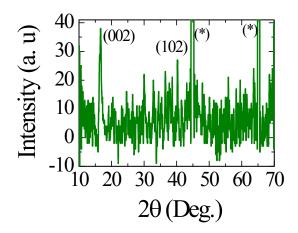


Fig. S1. XRD Pattern of Na_xCoO₂ electrode after cycling, Al peaks due to the current collector of the electrode are indexed with (*).

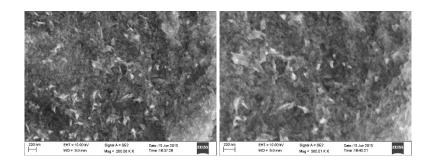


Fig. S2. FESEM images of Na_xCoO₂ electrode after cycling.

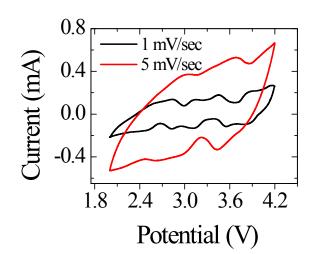


Fig. S3. CV of Na_xCoO₂ a different scan rates (1 mV and 5 mVs⁻¹).

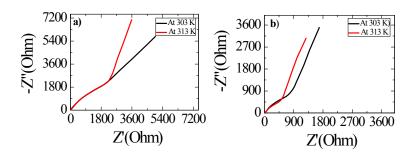


Fig. S4. Nyquist plot of the cell measured at two different temperatures, (a) Before cycling, (b) After cycling.

XPS studies

The various binding energy values have been presented based on the earlier reports (online library<u>http://techdb.podzone.net/</u>). Co^{3+} corresponds to the binding energy value 780 eV (779.7-708.3ev), Co^{2+} corresponds to 780.2 eV (780.1-780.3 eV) and Co^{0} corresponds to 778.2 eV (778.1-778.3.3 eV).

Further, it is very difficult to distinguish the oxidation state of Co by XPS. However, recently reports (ref: 26) the Co^{3+} to Co^{4+} conversion during charge/discharge process has been explained by XPS study. Whereas, the prepared material exhibits the Co2p3/2 binding energy value at 779.8 eV, which is very close to standard database value of Co^{3+} . Thus, we confirm that, in Na_xCoO₂, Co is exist in +3 oxidation state.