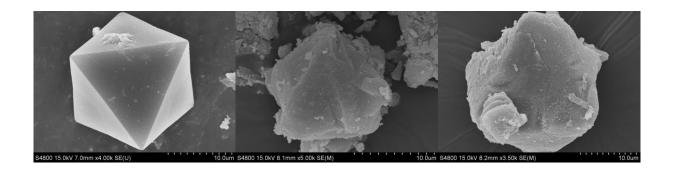
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015


Electronic Supplementary Information

Functionalized Metal-Organic Framework as a New Platform for Efficient and Selective Removal of Cadmium (II) from aqueous solution

Yang Wang,*a,b Guiqin Ye, a Huanhuan Chen,a Xiaoya Hu,a Zheng Niub and Shengqian Ma*b

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. E-mail: wangyzu@126.com

^b Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United State. sqma@usf.edu

Fig. S1. SEM images for Cu₃(BTC)₂ (left), Cu₃(BTC)₂-SO₃H (middle), and Cu₃(BTC)₂-SO₃H (right) treated with cadmium solution.

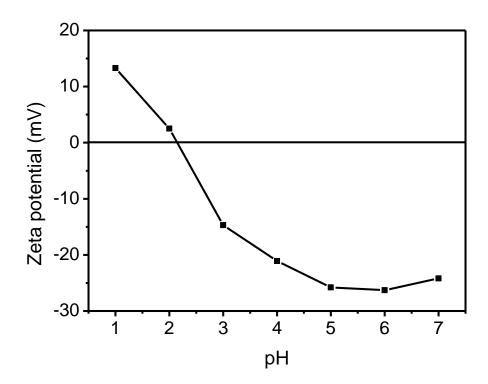
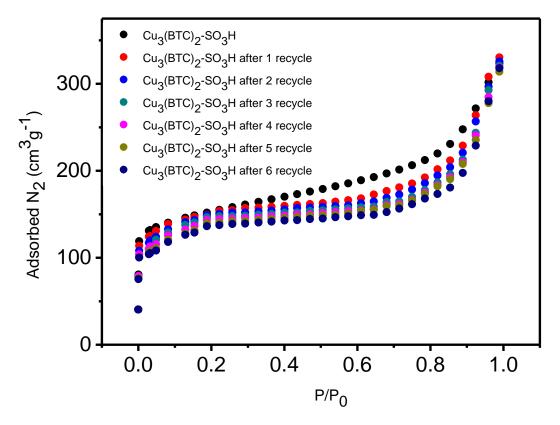



Fig. S2. Zeta potential curves vs. pH of the Cu₃(BTC)₂-SO₃H.

Fig. S3. N_2 adsorption isotherms for $Cu_3(BTC)_2$ -SO₃H and $Cu_3(BTC)_2$ -SO₃H treated with cadmium solution after, 1, 2, 3, 4, 5, and 6 cycles.

Table S1. The Langmuir and Freundlich isotherm constants of cadmium by Cu₃(BTC)₂-SO₃H

Metal ion	Lang	muir constan	nts	Freundlich constants		
Cadmium	$q_m (\text{mg/g})$	K_L (L/mg)	R^2	K_F (L/g)	1/n	R^2
	88.73	0.0305	0.9981	10.7884	0.3836	0.9725

Table S2. Kinetic parameters for the adsorption of cadmium by Cu₃(BTC)₂-SO₃H

Metal	Experimental	Pseudo-first-order kinetic model			Pseudo-second-order kinetic model		
Cadmium	$q_e (ext{mg/g})$	$q_e (\mathrm{mg/g})$	k _I (1/min)	R^2	$q_e (\mathrm{mg/g})$	K_2 ((g/mg)/min)	R^2