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Steady state equations for the direct and indirect charge transfer models 

The classical drift diffusion equations that describe the semiconductor systems are the 

continuity equations for electron and hole conduction currents, the displacement current 

and Poisson equation, as detailed in ref.1 In steady state (indicated by the over bar), the 

displacement current is zero and these equations can be written as a system of 6 first order 

differential equations that govern the variations of 6 variables: the electron current , the nj

hole current , the density of electrons and holes , the electrostatic potential  and pj n p 

the electric field :F
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Where  is the generation rate,  being the absorption coefficient and)exp(0 xG   

 the photon flux.  is the band to band recombination rate defined as 0 rU
.  and  are the electron and hole’s mobility, respectively,  and  00 pnpnBU r  nu pu nD

 are the electron and hole’s diffusion coefficient, which are linked to the mobility by nD

the Einstein relation: .  and  are the total density of ionized donors qTkuD Bkk / DN AN
and acceptors, and  are the dielectric permittivity of the vacuum and the relative 0 r

permittivityof the semiconductor. The total current density is given by .np jjj 

 For the system presented in Fig. 1 of the main text, we assume that at the 

semiconductor/metal interface ( ), the majority carrier concentration (electrons) is 0x
constant and equal to its equilibrium concentration:

(7))/exp()0( 0 TkqNnn Bnc 

Note that in our previous work,2 we had neglected the influence of the electric field 

and the concentration at the contact was directly modulated by the applied voltage as

, where  is the thermal voltage . We take as the reference )/exp()0( 0 TkqVnn B TkB

for the potentials, the electrostatic potential in :0x

(8)0)0( 

We consider the metal to be a perfect electron selective contact (no hole current):

(9)0)0( pj

At the semiconductor/electrolyte interface, the conduction and valence band edges are 

pinned and the voltage drop at the Schottky barrier is linked to the electrostatic potential 

as: . and therefore aredirectly modulated by the applied voltage )0()(   LVsc scV )(L

as: 

(10)VVL bi )(

where  is the built-in potential. Eqn (10) can be also written as:pnbiV 
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Two boundary conditions on the current must be imposed, depending on the charge 

transfer model for the semiconductor/electrolyte interface. We give the details of such 

boundary conditions hereafter.

a) Boundary conditions for the direct charge transfer model.
In the following we model the interface semiconductor/electrolyte as a thin layer of 

semiconductor of length , where all carrier densities are supposed to be uniform.3 For L
direct charge transfer of holes from the valence band, the hole current flowing through 

the semiconductor/electrolyte interface ( ) follows the relation:Lx 

(12) 0)( ppLqkLj Lvbp  

Where . Finally, the electron current is assumed to be zero at this )/exp(0 TkqNp Bpv 

contact 

(13)0)( Ljn

The boundary conditions (7) (10), (12) and (13) allow obtaining the complete solution 

to the system of equations (1) (6).

b) Boundary conditions for the indirect charge transfer model.
For indirect hole transfer from surface states the recombination current at the interface 

semiconductor/electrolyte must be calculated. One procedure to obtain such current 

consists in solving the continuity equations coupled to the master equation for the 

occupation probability, , of the surface states. We neglect direct charge transfer of f

electrons and holes at the interface, so that: .The 0)()(  LLjLLj pn 

recombination current can be calculated by solving the following continuity equations:
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where is determined by the master equation:f

(16)0)()1()1( 0  ffkffpffn spLpnLn 

In addition, by using the relation imposed by the detailed balance , )( 00 pn pnpn  
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and integrating eqn (14) and (15), we obtain:
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Equations (17) and (18) are the two last boundary conditions that are needed to obtain 

the complete solution to the set of differential equations (1) (6) for indirect hole transfer 

from the surface states. In the case that both the indirect charge transfer model and direct 

charge transfer model are considered, the hole current density at the 

semiconductor/electrolyte interface is given by the sum of (12) and (18) and the electron 

current density is given by (17). Several points should be remarked about eqn (17) and 

(18). First, in the expression of the recombination currents the first right hand side term 

correspond to a generalized Shockley Read Hall recombination including charge transfer 

kinetics, while the second term corresponds to charge transfer from these surface states. 

Second, it should be remarked that the total photo-anodic current is given by:

(19) 0)()()( ffNLkqLjLjLj ssspn  

Consequently, at high applied anodic potential, the surface states are filled with holes 

and . Therefore, the maximum theoretical anodic current is .0f 0fNLkq sss

Influence of the trap assisted recombination on the anodic current.

Fig. S1 Full drift diffusion simulation with two values of the hole trapping kinetic constant 

( ) indicated in the Figure. Higher hole trapping kinetics induce higher electron-hole p

recombination and therefore a lower anodic current. For this simulation we chose 

s-1 and the other parameters are the one indicated in Table S1.6105vbk
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Values of the parameters used for the simulations.

Table S1.Parameters of the simulations

Parameters Values 

L  (nm)100

L  (nm)10

TkB
 (meV)26

pn  =  (cm2V-1s-1)10

r 10

DN  (cm-3)1710

AN  (cm-3)0

ssN  (cm-3)2010

vc NN =  (cm-3)2010

gE  (eV)2.1

n  (eV)1.0

p  (eV)4.0

0G  (cm-3s-1)19105×

  (cm-1)310

vbk  (s-1)610

sk  (s-1)1

n  (cm3s-1)810

p  (cm3s-1)1210 

n  (s-1)3102×

p  (s-1)4104 

0f 99.0

Note that , , ,  and  must satisfy the detailed balance.2 In addition, n p n p 0f

we have chosen the values of and  such that the maximum achievable anodic sk vbk

currents from the surface states and valence band are comparable. According to equations 

(12) and (19), the ratio between both currents is . Therefore, since the )/(0 Lvbts pkNfk

maximum value of is of the order of 1015 cm-3 (see Figure 2b of the main text), we Lp
must have of the order of 10-6.vbs kk /
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Calculation of the equivalent circuits of Fig. 3 of the main text.

In the following we derive the small perturbation equations that are used to obtain the 

ECs of Fig. 3 of the main text. We focus on the processes that occur at the interface and 

neglect all the transport limitations, which would give rise to transmission line behavior. 

In addition, the geometric capacitance, , associated to the displacement current is gC

usually much smaller than the classical chemical capacitance of free or trapped carriers. 

This capacitance is therefore observed at much higher frequencies. For this reason, we 

can decouple the geometric capacitance from the rest of the circuit,1 represented with the 

impedance  in Fig. S2. In the following we calculate the impedance . elZ elZ

Fig. S2 General simplified EC for both interfacial charge transfer models displayed in Fig. 

1b and c of the main text. In this approximation, the geometric capacitance has been 

decoupled from the electronic transport as in ref.4

a) Direct hole transfer model.
For direct hole transfer, the continuity eqn (3) and (4) can be written as:
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Since we can neglect all transport limitation, all densities are homogeneous and we can 

integrate eqn (20) and (21) over the whole semiconductor layer. By applying boundary 

conditions (9), (12) and (13), we obtain the total extracted current:
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We now use the small perturbation theory, which consists in applying a small 

perturbation  to the steady state voltage . The carrier densities  and  can then V̂ V Ln Lp
be written as: and . Using eqn (11), we can identify  as:nnn LL

)
 ppp LL

)
 n)
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Note that charge transfer from the valence band is optimum for nanostructured 

semiconductors since in this case charge transfer occurs at all points and .1/ LL
From eqn (28) we obtain and consequently, from Fig. S2, we deduce the EC of Fig. elZ

3a of the main text where the external capacitance, , is the parallel combination of )(cb
outC
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b) Indirect hole transfer model.
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We apply the same procedure as the one used for the direct hole transfer model. 

However in this case we neglect the valence band capacitance (i.e ) as well as 0/  tp

the bulk recombination . In this case, after integrating eqn (3) and (4) over the rU
semiconductor layer and applying eqn (9), (14) and (15) and considering the time 

dependent master eqn, we get: 
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Applying the small perturbation method and the Laplace transform to eqn (34) and 
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We deduce the total impedance for indirect charge transfer:elZ
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From eqn (41) we deduce the EC of Fig. 3b.
References.
1 J. Bisquert, L. Bertoluzzi, I. Mora-Sero and G. Garcia-Belmonte, J. Phys. Chem. 

C, 2014, 118, 18983-18991.
2 L. Bertoluzzi and J. Bisquert, J. Phys. Chem. Lett., 2012, 3, 2517-2522.
3 J. Bisquert, J. Electroanal. Chem., 2010, 646, 43–51.
4 T. Ripolles-Sanchis, A. Guerrero, J. Bisquert and G. Garcia-Belmonte, J. Phys. 

Chem. C, 2012, 116, 16925–16933.


