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Steady state equations for the direct and indirect charge transfer models

The classical drift diffusion equations that describe the semiconductor systems are the
continuity equations for electron and hole conduction currents, the displacement current
and Poisson equation, as detailed in ref.! In steady state (indicated by the over bar), the
displacement current is zero and these equations can be written as a system of 6 first order
differential equations that govern the variations of 6 variables: the electron current j, , the
hole current j » » the density of electrons 7 and holes p , the electrostatic potential ¢ and

the electric field F :
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Where G = ag, exp(—ax) is the generation rate, & being the absorption coefficient and
¢, the photon flux. U, 1is the band to band recombination rate defined as
U, = B(@ — Ny P, ) u, and u, are the electron and hole’s mobility, respectively, D, and
D, are the electron and hole’s diffusion coefficient, which are linked to the mobility by
the Einstein relation: D, =u, k,T/q.Np and N, are the total density of ionized donors
and acceptors, gpand ¢, are the dielectric permittivity of the vacuum and the relative
permittivityof the semiconductor. The total current density is given by j=j, +j,.

For the system presented in Fig. 1 of the main text, we assume that at the
semiconductor/metal interface (x = 0), the majority carrier concentration (electrons) is
constant and equal to its equilibrium concentration:

n(0) =ny = N, exp(—q®, / kpT) (7)

Note that in our previous work,> we had neglected the influence of the electric field
and the concentration at the contact was directly modulated by the applied voltage as
n(0)=n,exp(—qV /k,T), where k,T is the thermal voltage . We take as the reference

for the potentials, the electrostatic potential in x =0:

$(0)=0 ®)
We consider the metal to be a perfect electron selective contact (no hole current):
Jj,(0)=0 9)

At the semiconductor/electrolyte interface, the conduction and valence band edges are
pinned and the voltage drop at the Schottky barrier is linked to the electrostatic potential
as:V = #(L)—¢(0). V. and therefore ¢(L) aredirectly modulated by the applied voltage
as:

P(L)=V, +V (10)

where V,, =®, - @, is the built-in potential. Eqn (10) can be also written as:



n, =n(L)=n,e " =ne "' (11)
Two boundary conditions on the current must be imposed, depending on the charge
transfer model for the semiconductor/electrolyte interface. We give the details of such

boundary conditions hereafter.

a) Boundary conditions for the direct charge transfer model.

In the following we model the interface semiconductor/electrolyte as a thin layer of
semiconductor of length OL , where all carrier densities are supposed to be uniform.? For
direct charge transfer of holes from the valence band, the hole current flowing through

the semiconductor/electrolyte interface (x = L) follows the relation:
J, (L) =gk, L(p, - p,) (12)

Where p, =N, exp(—q® , /kzT) . Finally, the electron current is assumed to be zero at this

contact
Jn(L)=0 (13)

The boundary conditions (7) —(10), (12) and (13) allow obtaining the complete solution
to the system of equations (1) —(6).

b) Boundary conditions for the indirect charge transfer model.

For indirect hole transfer from surface states the recombination current at the interface
semiconductor/electrolyte must be calculated. One procedure to obtain such current
consists in solving the continuity equations coupled to the master equation for the
occupation probability, f, of the surface states. We neglect direct charge transfer of
electrons and holes at the interface, so that: j (L+dL)= jp (L+0L)=0.The

recombination current can be calculated by solving the following continuity equations:
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where f is determined by the master equation:

B (A=) =e,f = B,p.f +&,(0=)=k,(f - f,)=0 (16)
In addition, by using the relation imposed by the detailed balance (¢,&, = B,n,8,p,)



and integrating eqn (14) and (15), we obtain:
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Equations (17) and (18) are the two last boundary conditions that are needed to obtain
the complete solution to the set of differential equations (1)—(6) for indirect hole transfer
from the surface states. In the case that both the indirect charge transfer model and direct
charge transfer model are considered, the hole current density at the
semiconductor/electrolyte interface is given by the sum of (12) and (18) and the electron
current density is given by (17). Several points should be remarked about eqn (17) and
(18). First, in the expression of the recombination currents the first right hand side term
correspond to a generalized Shockley Read Hall recombination including charge transfer
kinetics, while the second term corresponds to charge transfer from these surface states.

Second, it should be remarked that the total photo-anodic current is given by:
J(L)= L)+, (L) =gk N, (- 1,) (19)

Consequently, at high applied anodic potential, the surface states are filled with holes

and /' — 0. Therefore, the maximum theoretical anodic current is goLk N, f, .

Influence of the trap assisted recombination on the anodic current.
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Fig. S1 Full drift diffusion simulation with two values of the hole trapping kinetic constant
(B,) indicated in the Figure. Higher hole trapping kinetics induce higher electron-hole
recombination and therefore a lower anodic current. For this simulation we chose

k, =5x10°s" and the other parameters are the one indicated in Table S1.



Values of the parameters used for the simulations.

Table S1.Parameters of the simulations

Parameters Values

L 100 (nm)
SL 10 (nm)
k,T 26 (meV)
=, 10 (cm2V-lsh)
¢ 10
N, 10" (cm3)
N, 0 (cm?)
N, 10% (cm)
N =N, 10 (em3)
E, 1.2 (eV)
0y 0.1 (eV)
o, 0.4 (eV)
G, 5%10" (cm3s!)
o 10° (cm)
k., 10° (s1)
k 1 (s
B, 107 (cm3s)

’ 10 % (cm3s)
’ 2x10° (s
¢ 4x107 (s
1, 0.99

Note that §,, B,, &,, ¢, and f, must satisfy the detailed balance.? In addition,
we have chosen the values of k£ and k , such that the maximum achievable anodic
currents from the surface states and valence band are comparable. According to equations
(12) and (19), the ratio between both currents is k f,N, /(k,, p,). Therefore, since the
maximum value of p, is of the order of 10'> cm™ (see Figure 2b of the main text), we

must have &, /k , of the order of 10-.



Calculation of the equivalent circuits of Fig. 3 of the main text.

In the following we derive the small perturbation equations that are used to obtain the
ECs of Fig. 3 of the main text. We focus on the processes that occur at the interface and
neglect all the transport limitations, which would give rise to transmission line behavior.
In addition, the geometric capacitance, C,, associated to the displacement current is
usually much smaller than the classical chemical capacitance of free or trapped carriers.
This capacitance is therefore observed at much higher frequencies. For this reason, we
can decouple the geometric capacitance from the rest of the circuit,! represented with the

impedance Z,; in Fig. S2. In the following we calculate the impedance Z,, .
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Fig. S2 General simplified EC for both interfacial charge transfer models displayed in Fig.
1b and c of the main text. In this approximation, the geometric capacitance has been

decoupled from the electronic transport as in ref.4

a) Direct hole transfer model.

For direct hole transfer, the continuity eqn (3) and (4) can be written as:
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Since we can neglect all transport limitation, all densities are homogeneous and we can
integrate eqn (20) and (21) over the whole semiconductor layer. By applying boundary

conditions (9), (12) and (13), we obtain the total extracted current:

0
gL a”; ——j, +qL(G-U,) (22)
0
Lap; = L(G-U,)~k,L(p, - p,) (23)

We now use the small perturbation theory, which consists in applying a small
perturbation V to the steady state voltage V . The carrier densities n , and p, can then

be written as: n, =n, + h andp, = p, + Z) . Using eqn (11), we can identify A as:



n=-— KT n, (24)
In addition we have:

0, = BGp, +n,p) (25)
After applying the Laplace transform to eqn (22) and (23), we obtain:

J» ==aLwi+ BGip, +n,p)) (26)
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Combining eqn (24), (26) and (27), we obtain:
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Note that charge transfer from the valence band is optimum for nanostructured
semiconductors since in this case charge transfer occurs at all points and oL/L — 1.
From eqn (28) we obtain Z,, and consequently, from Fig. S2, we deduce the EC of Fig.

3a of the main text where the external capacitance, C*”, is the parallel combination of

out

C" and C,:
ci"c,
(cb) _
Cout W (33)

b) Indirect hole transfer model.



We apply the same procedure as the one used for the direct hole transfer model.
However in this case we neglect the valence band capacitance (i.edp /0ot = 0) as well as
the bulk recombinationU,.. In this case, after integrating eqn (3) and (4) over the
semiconductor layer and applying eqn (9), (14) and (15) and considering the time

dependent master eqn, we get:

0
qLa"; =—j, +qLG +q(= Bn, (1= /)N, +&, /N, YL (34)
0=GL+CB,p, N, +&,(1- /N, L (35)
‘2’; =B, (=) =6, f ~ B, pof +e, (- )=k, (f ~ fy) (36)

From eqn (35) and (36), we deduce:
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Applying the small perturbation method and the Laplace transform to eqn (34) and
(38), we obtain:
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We deduce the total impedance Z ; for indirect charge transfer:

: 1
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From eqn (41) we deduce the EC of Fig. 3b.
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