Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

A Bio-inspired CO₂-philic Network Membrane for Enhanced Sustainable Gas Separation

Shuai Quan,^a Songwei Li,^a Zhenxing Wang^a, Xingru Yan,^b Zhanhu Guo^{b,*} and Lu Shao^{a*}

^a School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China.

^b Integrated Composites Laboratory (ICL), Chemical and Biomolecular Engineering Department, University of Tennessee Knoxville, Tennessee 37996 USA

*To whom correspondence should be addressed

Email: shaolu@hit.edu.cn (L. S.); zguo10@utk.edu (Z. G.)

ESI Table of Contents

	S1. Digital photos of PEO-526 treated at various stages. (a) original PEO-526, (b)
treat	ment at 80°C for 6 hours, (c) and (d) treatment at 160 °C for 2 hours
	S2. Digital photos of DA/PEO mixture treated (a) at 120 °C for 6 hours, (b) at 160 °C for
2 ho	urs
•	S3. Calculated activation energy of D-PEO and D-PEO-I
	S4. Pure gas permeability of D-PEO and D-PEO-I compared with other PEO-based
mem	ibranes
	S5. Pure gas solubility (a) and diffusivity (b) of D-PEO-I compared with LCM at 35 °C
and	10 atm

S1. Digital photos of PEO-526 treated at various stages. (a) original PEO-526, (b) treatment at 80°C for 6 hours, (c) and (d) treatment at 160 °C for 2 hours

To determine the possibility of PEO-526 forming cross-linked structure without DA, 8 g PEO-526 was heated at 80°C for more than 6 hours with stirring and the temperature was raised to 120 °C for another 6 hours, and then heated at 160 °C for 2 hours. The digital photos are shown below. Obviously, the pure PEO-526 cannot be cross-linked simply by thermal treatment without DA

Fig. S1 Digital photos of PEO-526 treated at various stages. (a) original PEO-526, (b) treatment at 80°C for 6 hours, (c) and (d) treatment at 160 °C for 2 hours

S2. Digital photos of DA/PEO mixture treated (a) at 120 °C for 6 hours, (b) at 160 °C for 2 hours

To clarify the effect of oxygen environment on the reaction, PEO-526 and DA were mixed directly and then the mixture was treated under vacuum at 80 °C for 6 hours, 120 °C for another 6 hours, and 160 °C for 2 hours. Finally, canary yellow, hyaline solid was obtained, shown as below. It is clear that the reaction between DA and PEO-526 can readily happen without any oxygen (under vacuum).

Fig. S2 Digital photos of DA/PEO mixture treated (a) at 120 °C for 6 hours, (b) at 160 °C for 2 hours

S3. Calculated activation energy of D-PEO and D-PEO-I

	D-PEO				D-PEO-I					
	H ₂	N_2	CH ₄	CO ₂	H ₂	N_2	CH ₄	CO ₂		
E _P (kJ/mol)	39.4±0.5	50.2±0.8	58.6±0.6	34.0±0.5	28.5±0	.3 33.8±0.5	31.2±0.5	18.1±0.2		
E _D (kJ/mol)	-	24.8±0.8	45.3±1.5	54.5±0.8	-	31.0±0.3	29.7±0.3	34.4±0.1		
ΔH (kJ/mol)	-	25.7±0.5	13.6±1.0	-22.2±0.3	-	2.8±0.3	1.5±0.2	-16.3±0.2		

Table S1. Calculated activation energy (E_P , E_D and ΔH) of D-PEO and D-PEO-I

■ S4. Pure gas permeability of D-PEO and D-PEO-I compared

with other PEO-based membranes.

 Table S2. Pure gas permeability of D-PEO and D-PEO-I compared with other PEO-based membranes

 H₂
 N₂
 CH₄
 CO₂

	H_2	N_2	CH ₄	CO ₂
D-PEO*	13.7	1.1	2.5	56
D-PEO-I*	40.9	8.3	22.1	309
LCM ^[1]	21.5	2.6	9.8	170
Am PEO ^[2]	21.0	3.0	7.1	143
XLPEGDA ^[2]	15.0	2.2	5.8	110

* This work

S5. Pure gas solubility (a) and diffusivity (b) of D-PEO-I compared with LCM at 35 °C and 10 atm.

Fig. S3 Pure gas solubility (a) and diffusivity (b) of D-PEO-I compared with LCM ^[1] at 10 atm.

References:

- [1] L. Shao, S. Quan, X. Q. Cheng, X. J. Chang, H. G. Sun and R. G. Wang, *Int J Hydrogen Energ*, 2013, 38, 5122-5132.
- [2] H. Lin and B. D. Freeman, J Membr Sci, 2004, 239, 105-117.