Sn-stabilized Li-rich layered Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ oxide as cathode for

advanced lithium-ion batteries

Qi-Qi Qiao, Lei Qin, Guo-Ran Li, Yong-Long Wang and Xue-Ping Gao*

Fig. S1. Reitveld refinements of the pristine LNMO (a) and LNMO-Sn_{0.01} (b) based on the LiNi_{0.5}Mn_{0.5}O₂ ($R^{\bar{3}}m$) and Li₂MnO₃ (C2/m) structure. Li_{1.17}Ni_{0.25}Mn_{0.58}O₂ is considered as 0.4Li₂MnO₃·0.6LiNi_{0.5}Mn_{0.5}O₂, while Li_{1.17}Ni_{0.25}Mn_{0.57}Sn_{0.01}O₂ is considered as 0.4Li₂Mn_{0.98}Sn_{0.02}O₃ · 0.6LiNi_{0.5}Mn_{0.49}Sn_{0.01}O₂. Here, the occupancy of Sn site is set to replace Mn site to refine.

materials. sg = space group, occ = site occupancy.sg: $R\overline{3}m$ LNMO LNMO-Sn_{0.01} Z occ х Z occ Х y у 0 Li (3a) 0 0 0 0.913(6) 0 0 0.928(6) Li (3b) 0 0 0.5 0.086(4) 0 0 0.5 0.071(4) Ni (3a) 0 0 0 0.086(4) 0 0 0 0.071(4) Ni (3b) 0 0.5 0.414(4) 0 0.5 0.429(4) 0 0

Table S1. The atom parameters for LiNi_{0.5}Mn_{0.5}O₂ phase in LNMO and LNMO-Sn_{0.01}

Table S2. The atom parameters for Li₂MnO₃ phase in LNMO and LNMO-Sn_{0.01} materials. sg = space group, occ = site occupancy.

1

0.5000

0

0

0

0

0

0

0.5

0.5

0.241407

0.49000

0.01

1

sg: C2/m	LNMO					LNMO-Sn _{0.01}			
	х	у	Z	occ	х	у	Z	occ	
Li (2b)	0	0.5	0	1	0	0.5	0	1	
Li (2c)	0	0	0.5	1	0	0	0.5	1	
Li (4h)	0	0.6606	0.5	1	0	0.6606	0.5	1	
Mn (4g)	0	0.1668(6)	0	1	0	0.1667(8)	0	0.98	
Sn (4g)					0	0.1667(8)	0	0.02	
O (4i)	0.2098(17)	0	0.2412(23)	1	0.2722(18)	0	0.2262(21)	1	
O (8j)	0.2160(19)	0.3425(8)	0.2379(27)	1	0.2853(20)	0.3346(9)	0.2654(20)	1	

Table S3. Summary of the R factors and the crystallographic parameters for LNMO and

LNMO-Sn _{0.01} m	aterials
---------------------------	----------

Mn (3b)

Sn (3b)

O (6c)

0

0

0

0

0.5

0.2437(7)

	Rwp	Rp	Cell paramete	Ni in	Li		
	(%)	(%)	a	b	c	layer (%))
LNMO	10.7	11.2	2.86221(22)	2.86221(22)	14.2387(23)	8.6	
Li ₂ MnO ₃ in LNMO	12.7	11.2	4.9573(15)	8.598(4)	5.0262(24)		
LNMO-Sn _{0.01}			2.86179(23)		14.2642(25)	7.1	
Li ₂ MnO ₃ in LNMO-	12.6	10.9	5.0042(35)	8.633(5)	5.0631(30)		
Sn _{0.01}							

Fig. S2. Reitveld refinements of the pristine LNMO (a) and LNMO-Sn_{0.01} (b) based on the LiNi_{0.5}Mn_{0.5}O₂ ($R^{\bar{3}}m$) and Li₂MnO₃ (C2/m) structure. Here, the occupancies of Sn and Mn free to refine.

Table S4. The atom parameters for $LiNi_{0.5}Mn_{0.5}O_2$ phase in LNMO-Sn_{0.01} material. sg = space group, occ = site occupancy.

sg: R $\overline{3}$ m	LNMO-Sn _{0.01}				
	х	у	Z	occ	
Li (3a)	0	0	0	0.969(6)	
Li (3b)	0	0	0.5	0.031(6)	
Ni (3a)	0	0	0	0.031(6)	
Ni (3b)	0	0	0.5	0.469(6)	
Mn (3b)	0	0	0.5	0.649(13)	
Sn (3b)	0	0	0.5	-0.149(13)	
O (6c)	0	0	0.241407	1	

Table S5. The atom parameters for Li_2MnO_3 phase in LNMO-Sn_{0.01} material. sg = space group, occ = site occupancy.

sg: C2/m	LNMO-Sn _{0.01}						
	Х	у	Z	occ			
Li (2b)	0	0.5	0	1			
Li (2c)	0	0	0.5	1			
Li (4h)	0	0.6606	0.5	1			
Mn (4g)	0	0.1585(10)	0	1.492(9)			
Sn (4g)	0	0.1585(10)	0	-0.492(9)			
O (4i)	0.2347(21)	0	0.2503(25)	1			
O (8j)	0.3095(22)	0.3277(11)	0.2359(21)	1			

	Rwp	Rp (%)	Cell parameters (Å)		
	(%)		a	b	c
LNMO-Sn _{0.01}	11.9	9.6	2.86171(25)		14.2615(29)
Li ₂ MnO ₃ in LNMO-Sn _{0.01}			4.9980(30)	8.689(5)	5.0607(35)

Table S6. Summary of the *R* factors and the crystallographic parameters for LNMO- $Sn_{0.01}$ material

As shown in **Table S1, S2,** and **S3**, the refinement is acceptable with a low Rp value. When the occupancies of Sn and Mn are free to replace in the refinement, it is not appropriate with the appearance of negative occupancy (**Fig. S2 and Table S4, S5**). It means that the occupancy of Sn atoms on Mn positions in the layered structure is reasonable.

Fig. S3. The EDS mappings of Sn, Ni, Mn, and O in the LNMO-Sn_{0.03} samples.

Г

5µm

٦

5µm

Table S7. Element concentration obtained by ICP-MS (wt%)

	Li	Ni	Mn	Sn
LNMO	9.72	15.9	32.6	
LNMO-Sn _{0.03}	9.08	15.9	29.8	2.26

Table S8. Atomic ratio based on ICP-MS

	Li	Ni	Mn	Sn
LNMO	1.21	0.24	0.51	
LNMO-Sn _{0.03}	1.16	0.24	0.48	0.02

Fig. S4. XPS spectra and fitted curves of the LNMO-Sn $_{0.03}$ samples: Mn 2p and Ni 2p core levels.

Fig. S5. The charge–discharge curves of the LNMO and LNMO-Sn_{0.03} samples in different cycles at 0.1 C rate (30 mA g^{-1}) between 2.0 and 4.8 V (vs Li/Li⁺)

Fig. S6. Cycle performances of LNMO, LNMO-Sn_{0.01}, LNMO-Sn_{0.03}, and LNMO-Sn_{0.05} samples at 5 C rate (1500 mA g^{-1})

Fig. S7. Equivalent circuits used to fit the experimental data. R_s is solution resistance, R_{ct} is charge-transfer resistance, CPE and CPE1 are constant phase element, W_s and W_o are assigned to the finite Nernst diffusion impedance in the thin film and semi-infinite Warburg diffusion impedance in the bulk, respectively.

Sample	Cycle	$R_{ct}\left(\Omega ight)$	$W_{s}\left(\Omega ight)$	$W_{o}\left(\Omega ight)$
	1st	471.9	-	411.3
	10th	38.1	-	9013
$Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O_2$	30th	43.6	-	9508
	50th	43.9	1029	2503
	100th	44.6	628	2862
	1st	359.1	397.4	2991
$L_{i}(L_{i}) = M_{i} + M_{i} + S_{i} = 0$	10th	72.3	940.2	1316
$L1(L1_{0.17}N1_{0.25}NIn_{0.57}Sn_{0.01})O_2$	30th	68.8	524.2	875
	50th	81.2	1173	1145
	100th	91.1	791.9	1231
	1st	262.6	398.6	951
Li(Li Ni Mn Sn)O	10th	56.2	1334	1801
$Li(Li_{0.17}Ni_{0.25}Nii_{0.55}Sii_{0.03})O_2$	30th	78.3	1338	1809
	50th	97.7	454.1	1258
	100th	155.8	1189	1352
	1st	188.0	1768	1299
$L_{i}(L_{i}) = M_{i} + M_{i} + S_{i} = 0$	10th	43.5	639.1	523.8
$L1(L1_{0.171} \times 1_{0.251} \times 11_{0.53} \times 1_{0.05}) U_2$	30th	33.4	874.2	1388
	50th	30.8	905.8	1887
	100th	41.9	962.5	1322

Table S9. The simulated results from electrochemical impedance spectra of the $Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O_2$ and Sn^{4+} substituted samples.