Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

## **Supporting Information**



Schema 1 Sol-gel forming process of Co<sub>2</sub>(OH)<sub>3</sub>Cl xerogels.



Figure S1 O1s energy spetrum of 4%Mn-Co<sub>2</sub>(OH)<sub>3</sub>Cl xerogel.



Figure S2 XPS spectra of Co<sub>2</sub>(OH)<sub>3</sub>Cl xerogel: a) survey spectrum, (b) O 1s, (C) Cl 2p , and (d) Co 2p energy spectrum.



**Figure S3** (a) Cyclic voltammetric (CV) curves of the first five cycles in the potential range of 0-3 V at a scan rate of 0.1 mV s<sup>-1</sup> and (b) the charge-discharge curves between 0.01 and 3.0 V at the current of 100 mA·g<sup>-1</sup> for pure Co<sub>2</sub>(OH)<sub>3</sub>Cl xerogel xerogel.

| sample     | BET surface area(m <sup>2</sup> g <sup>-1</sup> ) | Pore diameter (nm) | Total pore volume(cm <sup>3</sup> g <sup>-1</sup> ) |
|------------|---------------------------------------------------|--------------------|-----------------------------------------------------|
| 0%Mn doped | 92.4                                              | 33.36              | 1.076                                               |
| 4%Mn doped | 117.32                                            | 33.64              | 1.197                                               |
| 8%Mn doped | 119.28                                            | 34.23              | 1.326                                               |

Table S1 Textural parameters of the Mn doped and undoped Co<sub>2</sub>(OH)<sub>3</sub>Cl.

**Table S2** Comparison of the electrochemical properties of the present  $Co_2(OH)_3Cl$ , Mn doped  $Co_2(OH)_3Cl$  xerogel samples andprevious pure  $Co_2(OH)_3Cl$ ,  $H_3NOHCl$ ,  $Co(OH)_2$  and  $CoCl_2$  materials.

| Materials                                 | Initial capacity (mA h g <sup>-1</sup> ) | Capacity (mA h g <sup>-1</sup> )            | Reference  |
|-------------------------------------------|------------------------------------------|---------------------------------------------|------------|
| Co <sub>2</sub> (OH) <sub>3</sub> Cl      | 1282.7 (100 mA g <sup>-1</sup> )         | 640 (100 mA g <sup>-1</sup> , 50 cycles)    | This paper |
| 4%Mn-Co <sub>2</sub> (OH) <sub>3</sub> Cl | 1965.9 (100 mA g <sup>-1</sup> )         | 1376.5 (100 mA g <sup>-1</sup> , 50 cycles) | This paper |
| Co <sub>2</sub> (OH) <sub>3</sub> Cl      | 1719 (200 mA g <sup>-1</sup> )           | 407 (200 mA g <sup>-1</sup> , 50 cycles)    | 21         |
| H <sub>3</sub> NOHCl                      | 2143.4 (50 mA g <sup>-1</sup> )          | 676.1(50 mA g <sup>-1</sup> , 30 cycles)    | 39         |
| Co(OH) <sub>2</sub>                       | 1558 (200 mA g <sup>-1</sup> )           | 400 (200 mA g <sup>-1</sup> , 30 cycles)    | 14         |
| Co(OH) <sub>2</sub>                       | 909 (58 mA g <sup>-1</sup> )             | 63 (58 mA g <sup>-1</sup> , 50 cycles)      | 51         |
| CoCl <sub>2</sub>                         | 780 (1 C)                                | 375 (1 C, 50 cycles) (1C =407.5)            | 17         |



Figure S3. The TEM image of 0% Mn doped Co(OH)<sub>2</sub>Cl<sub>3</sub>.



Figure S4 EIS spectra of 4% and 8% Mn-Co<sub>2</sub>(OH)<sub>3</sub>Cl samples after 30 cycles at a current density of 500 mAg<sup>-1</sup>.



Figure S5 SEM image of Mn doped Co<sub>2</sub>(OH)<sub>3</sub>Cl xerogels.