Supporting Information

β-Cyclodextrins Stabilized Magnetic Fe₃S₄ Nanoparticles for Efficient Removal of Pb (II)

Long Kong,^a Lili Yan,^b Zan Qu,^a Naiqiang Yan,^a and Liang Li^{a*}

^aSchool of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: liangli117@sjtu.edu.cn; Tel: +86 21 54747567

^bSchool of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

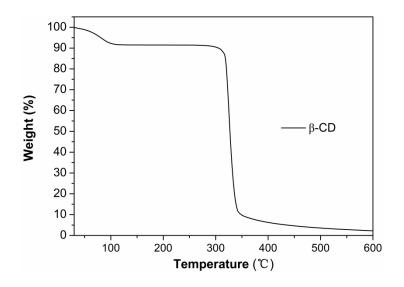
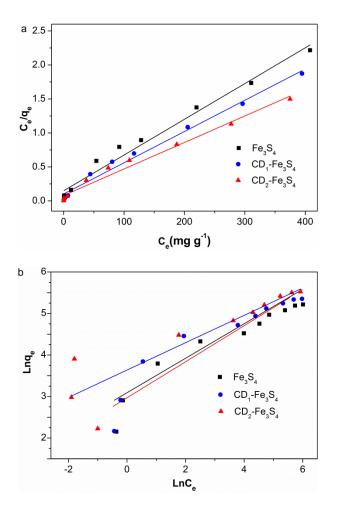



Fig S1 TGA curve of β -CD

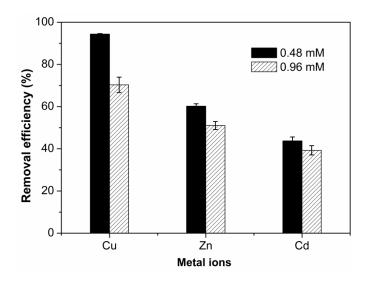

The TGA result of β -CD was shown in Figure S1. Under the temperature range of 30-600 °C, the β -CD was almost completely decomposed with a residual weight about 2%. And the surface β -CD of CD-Fe₃S₄ could also be decomposed. Based on the TGA analysis data of Fig 4 and Fig S1, the weight percentage of β -CD in CD₁-Fe₃S₄ and CD₂-Fe₃S₄ could be estimated. Thus, the β -CD was calculated to be 3.69% and 6.85% for CD₁-Fe₃S₄ and CD₂-Fe₃S₄, respectively.

Figure S2. The fittings of Langmuir model (a) and Freundlich model (b) for the adsorption of Pb (II) by Fe_3S_4 , CD_1 - Fe_3S_4 and CD_2 - Fe_3S_4 . The symbols are experimental data; the solid lines represent the fitted curves.

Table S1 Adsorption isotherm parameters for Langmuir and Freundlich model of Pb (II)adsorption by Fe_3S_4 , CD_1 - Fe_3S_4 and CD_2 - Fe_3S_4 .

Adsorbent	Langmuir model			Freundlich model		
	$Q_m (mg g^{-1})$	$K_L(L mg^{-1})$	R ²	$K_F (mg g^{-1})$	n	R ²
Fe ₃ S ₄	190.11	0.035	0.979	18.31	2.43	0.912
CD ₁ -Fe ₃ S ₄	217.39	0.045	0.987	21.93	2.41	0.874
CD ₂ -Fe ₃ S ₄	256.41	0.049	0.979	38.00	3.04	0.807

Fig S3 Removal efficiency of Cu (II), Zn (II), and Cd (II) by CD_2 -Fe₃S₄. Experiment conditions: Metal ions concentration (0.48, 0.96 mM), Pb (II) concentration 100 mg L⁻¹(50 mL), sorbent 35 mg, pH 6.0, contact time 24 h, temperature 25 °C.

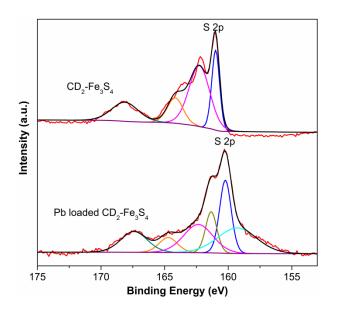


Fig S4 XPS spectra of S 2p regions for CD_2 -Fe₃S₄ before and after Pb (II) adsorption.