Support information for:

Constructing an Optimal Conductive Network in MnO-Based Nanohybrids as High-Rate and Long-Life Anode Materials for Lithium-Ion Batteries

Dai-Huo Liu,[†] Hong-Yan Lü,[†] Xing-Long Wu,^{*†} Bao-Hua Hou,[†] Fang Wan,[†] Sheng-Da Bao,[†] Qingyu Yan,^{*‡,1} Hai-Ming Xie[†] and Rong-Shun Wang^{*†}

* National & Local United Engineering Laboratory for Power Batteries, and Faculty of Chemistry, Northeast Normal University, Changchun 130024, China. Email addresses: xinglong@nenu.edu.cn (X. W.); wangrs@nenu.edu.cn (R. W.)

‡ School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore Email addresses: alexyan@ntu.edu.sg (Q. Y.).

I Energy Research Institute@NTU, Nanyang Technological University, Singapore 637459, Singapore.

Figure S1. Representative TEM images of MnO@C/rGO nanohybrids, (a) before cycles, (b) after 100 discharge/charge cycles at 7.6 A g^{-1} after three low-rate cycles at 0.08 A g^{-1} .