Revised Electronic Supplementary Information

Hollow Zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane

Chengyi Dai,^a Shaohua Zhang,^b Anfeng Zhang,^a Chunshan Song,^{a,c*} Chuan Shi ^{b*} and Xinwen Guo^{a*}

a State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China. Fax: +86-0411-84986134; Tel: +86-0411-84986133, +86-0411-84986134; E-mail: guoxw@dlut.edu.cn

b Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, P. R. China. Tel: +86-0411-84986083; E-mail: chuanshi@dlut.edu.cn

c EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Department of Energy & Mineral Engineering, and Department of Chemical Engineering Pennsylvania State University, University Park, Pennsylvania 16802, United States. Fax: 814-865-3573; Tel: 814-863-4466; E-mail: csong@psu.edu

Fig. S1. Metal particle size distributions of prepared (a, b) 1.5NiO/S-1 and (c, d) 1.5NiO@Hol S-1 after reduction under H₂ at 800 °C for 30 min.

Fig. S2. Metal particle size distributions of prepared (a, b) 0.5Pt/S-1 and (c, d) 0.5Pt@Hol S-1 after calcination at 400 °C for 2 h (a, c) and reduction under H₂ at 800 °C for 30 min (b, d).

Fig. S3. Metal particle size distributions of prepared (a) 1.5NiO-0.5Pt/S-1 and (b, c) 1.5NiO-0.5Pt@Hol S-1 after calcination in air at 400 °C for 2 h (b) and reduction under H₂ at 800 °C for 30 min (a, c).

Fig. S4. ²⁹Si MAR NMR spectra of 1.5NiO/S-1 and 1.5NiO@Hol S-1.

Fig. S5. FT-IR spectra in the hydroxyl range of 1.5NiO/S-1 and 1.5NiO@Hol S-1.

Fig.S6. FT-IR spectra of 1.5NiO/S-1 and 1.5NiO@Hol S-1.

Fig. S7. XRD patterns of prepared (a) 1.5NiO/S-1, (b) 1.5NiO/@Hol S-1, (c) 0.5Pt/S-1, (d) 0.5Pt/@Hol S-1, (e) 1.5NiO-0.5Pt/S-1, (f) 1.5NiO-0.5Pt/@Hol S-1 after calcination in air at 400 °C for 2 h (A) and reduction under H₂ at 800 °C for 30 min (B).

Fig. S8. XRD patterns of prepared (a) Silicalite-1, (b) 0.5Pt/S-1, (c) 0.5Pt@Hol S-1 after calcination in air at 400 °C for 2 h and (d) 0.5Pt@Hol S-1 after reduction under H₂ at 800 °C for 30 min.

Sample	H ₂ consumption
	(µmol/g)
1.5NiO/S-1	94.8
1.5NiO@Hol S-1	109
0.5Pt/S-1	11.7
0.5Pt@Hol S-1	0
1.5NiO-0.5Pt/S-1	198
1.5NiO-0.5Pt@Hol S-1	100

Table S1. H₂ consumption of samples calculated from H₂-TPR

The conversions of CH_4 and CO_2 over the catalysts with different metal content were shown in **Fig. S9**. With the nickel increasing, the conversions of CH_4 and CO_2 didn't improve and the sample of 1.5Ni@Hol S-1 showed the best performance. With the Pt content increasing, the conversions of CH_4 and CO_2 improve obviously (**Fig. S10**). Due to the high price of Pt, the amount of platinum kept within 0.5%. According to **Fig. S9** and **Fig. S10**, this loading (1.5%Ni and 0.5%Pt) is optimal. The real Ni and Pt contents of the samples were listed in Table S2.

Table S2 Ni and Pt contents of the samples before reduction

Sampla	Real composition ^a	
Sample	Ni (wt%)	Pt (wt%)
1.5NiO@Hol S-1	1.96	/
3NiO@Hol S-1	3.99	/
5NiO@Hol S-1	6.44	/
1.5NiO-0.1Pt@Hol S-1	1.76	0.14
1.5NiO-0.3Pt@Hol S-1	2.07	0.45
1.5NiO-0.5Pt@Hol S-1	1.58	0.54

a ICP analysis

Fig. S9. (a) CH₄ and (b) CO₂ conversions over Ni@Hol S-1 with different nickel contents $(F/W=72000 \text{ ml/g}\cdot\text{h}, 800 \degree\text{C}, \text{ atmospheric pressure}).$

Fig. S10. (a) CH_4 and (b) CO_2 conversions over the catalysts at different reaction temperatures (F/W=72000 ml/g·h, atmospheric pressure), time on stream 2 h.

The effect of reaction temperature on catalytic activity of catalysts was compared and the results were shown in **Fig. S11**. Over the two catalysts, there is an increase of CH_4 and CO_2 conversions with the rise of temperature. The conversions of CH_4 and CO_2 are low at 700 °C. With increasing temperature to 750 °C, CH_4 conversion is about 40% over 1.5Ni@Hol S-1, which is lower than that over 1.5Ni-0.5Pt@Hol S-1 (>50%). At 800 °C, the two catalysts are rather similar in performance.

Fig. S11. (a) CH₄ and (b) CO₂ conversions over the catalysts at different temperatures (F/W=72000 ml/g·h, atmospheric pressure), time on stream 2 h.

The distributions of the products were shown in **Fig. S12c**, **d**. As showed in Fig. S12c, the selectivities of H₂ were ca. 80% over the 1.5Ni@Hol S-1 and 1.5Ni-0.5Pt@Hol S-1 catalysts under the adopted reaction conditions. The higher CO₂ conversion compared with that of CH₄ (**Fig. S12a**, **b**) and the H₂/CO (n/n, Fig. S12d) is smaller than 1 are results of reversed-water-gas-shift reaction.

Fig. S12. (a) CH₄ and (b) CO₂ conversions, (c) H₂ selectivity and (d) H₂/CO (n/n) over the 1.5Ni@Hol S-1 and 1.5Ni-0.5Pt@Hol S-1 catalysts (F/W=72000 ml/g·h, 800 °C, atmospheric pressure).