Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting information

Morphology-engineered and TiO₂ (B)-introduced anatase TiO₂ as advanced

anode materials for lithium-ion batteries

Qinghua Tian,^a Zhengxi Zhang,^{*a} Li Yang ^{*ab} and Shin-ichi Hirano^b

^aSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai

200240, P. R. China

^bHirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240, P. R.

China

*Corresponding author e-mail address: liyangce@sjtu.edu.cn,

zhengxizhang@sjtu.edu.cn (Z.X. Zhang)

Tel: +86 21 54748917, Fax: +86 21 54741297

^{*} Corresponding author. Tel.: +86 21 54748917; fax: +86 21 54741297.

E-mail address: liyangce@sjtu.edu.cn (L. Yang), zhengxizhang@sjtu.edu.cn (Z.X. Zhang).

Figure S1. (a) Discharge/charge profiles of TiO_2 -400 at 0.2 C. (b) Cycling performance of TiO_2 -400 at 0.2 C.

Figure S2. (a) Cyclic voltammograms of TiO_2 -500 at six various scan rates; (b) and (c) Plots of log (current density)-log (scan rate), that is, log (j_p , mA)-log (v, mV s⁻¹), based on the cyclic voltammograms in (a).

Figure S3. N_2 adsorption/desorption isotherms and the corresponding pore size distributions (inset) of TiO₂-MB/400.