Supplementary Information:

Mesoporous NiO single-crystalline utilized as noble metal free

catalyst for non-aqueous Li-O₂ battery

Shengfu Tong,^{a,‡} Mingbo Zheng,^{b,‡} Yong Lu,^a Zixia Lin,^b Jun Li,^b Xueping Zhang,^a Yi

Shi,^b Ping He^{a,*} and Haoshen Zhou^{a,c}

- a. National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
- b. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.
- c. Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba 305-8568, Japan.

*Corresponding author: Prof. P. He

E-mail: pinghe@nju.edu.cn

[‡] These authors contributed equally to this work.

Results

Fig. S1 SEM (a and b) and TEM (c) images of as-prepared NiO.

Fig. S2 SEM image of NiO/AB based electrode experienced discharge and recharge.

Fig. S3 (a) The continuously cycled discharge-charge curves with cut-off capacity of 200 mAh·g⁻¹ of the non-aqueous Li-O₂ battery with NiO as the oxygen cathodic material, the current applied for discharge and charge was 100 mA·g⁻¹; (b) the relation between the half-capacity voltage and the cycled times during the continuously cycled discharge-recharge performances.