Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries

Lorenzo Zolin, ^{*a,b,d,**} Matteo Destro,^{*d*} Didier Chaussy,^{*a,b,c*} Nerino Penazzi,^{*d*} Claudio Gerbaldi,^{*d*} Davide Beneventi,^{*a,b,c*}

^a Univ. Grenoble Alpes, LGP2, F-38000 Grenoble, France

^b CNRS, LGP2, F-38000 Grenoble, France

^c Agefpi, LGP2, F-38000 Grenoble, France

^d Politecnico di Torino, Department of Applied Science and Technology - DISAT, CHENERGY Group, GAMELab, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

The electrochemical response of the paper handsheet stacking separators was tested in Li-ion paper cells in terms of constant current charge/discharge cycling at different temperatures, specifically 0, 10 and 60 °C.

Figure S1. Constant-current specific capacity vs. cycle number cycling behaviour of the lab-scale all-paper Li-ion "pouch" cells at different temperatures and current regimes.